

50 Hz

SMB10 - SMB20 - SMB30 Series

VARIABLE SPEED BOOSTER SETS WITH e-SM DRIVE VERTICAL MULTISTAGE ELECTRIC PUMPS SERIES e-SV™ SMART HORIZONTAL MULTISTAGE ELECTRIC PUMPS SERIES e-HM SMART

🕌 UK market

a xylem brand

Lowara, e-SV, HYDROVAR, Xylect are trademarks of Xylem Inc. or one of its subsidiaries. All other trademarks of registered trademarks are property of their respective owners.

a xylem brand

CONTENTS

GENERAL INTRODUCTION – PRODUCT DESCRIPTION	4
DESCRIPTION OF OPERATION	5
INSTALLATION	7
CHOICE AND SELECTION	8
SMB10, SMB20, SMB30 SERIES	5
ELECTRIC PUMP RANGE AND CHARACTERISTICS	8
HYDRAULIC PERFORMANCE TABLES	7
SMB10 SERIES	1
SMB20 SERIES	6
SMB30 SERIES	9
PERFORMANCE CURVES	1
Hc PRESSURE DROP CURVE	4
ACCESSORIES	7
TECHNICAL APPENDIX	3

SMB BOOSTER SETS SERIES GENERAL INTRODUCTION – PRODUCT DESCRIPTION

The variable speed SMB booster sets are designed for water transfer and pressurization in the following applications:

((() LOWARA

a xylem brand

- Apartments, single and multi-family houses, condominiums and residential buildings
- Hotels, restaurants, spas
- Various industrial applications

SMB series booster set are variable speed pumping stations with one, two or three **e-SV Smart** series multistage vertical pumps or **e-HM Smart** series multistage horizontal pumps. Each pump is equipped with an e-SM frequency drive that ensures the variable speed operation on all electric pumps.

These types of systems improve the comfort of the end user, reducing noise emissions and also "water hammer", thanks to the gradual switching off of the pumps.

SMB10: The pump is connected to a 5-way fitting by a non-return valve. Control panel is available as accessory.

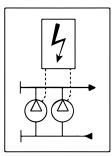
SMB20, SMB30: The pumps are installed on a single base and connected to each other by means of suction and delivery pipes. The pumps are connected to the manifolds by means of on-off valves and non-return valves. The control panel is secured to the same base by means of a bracket.

SMB series booster sets with e-SV Smart and e-HM Smart series pumps are certified for use with drinking water.

SMB series booster sets are available with a wide range of electric pumps to satisfy the different needs of every system. SMB booster sets are also available in special versions to fit specific duty points and applications. Systems for regulating the speed of the electric motors, as in SMB series booster sets, are used in the following cases:

- In case of systems with a lot of users where the daily consumption varies frequently and in different periods.
- When it is necessary to obtain constant pressure.
- In the case of systems with supervision it is possible to monitor and check the performances of the booster sets.

SMB BOOSTER SETS SERIES DESCRIPTION OF OPERATION


All the electric pumps are controlled by e-SM drive frequency converter and operate at variable speeds.

Start-up is automatic, depending on system requirements. Each electric pump has a pressure transmitter that provides a pressure reading, which is recorded and sent to the frequency converter.

The electric pump speed is modulated based on system requirements.

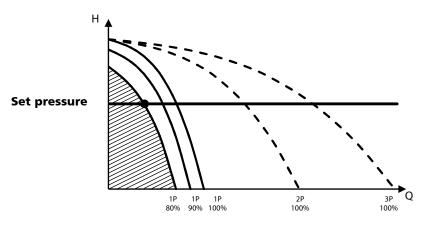
Electric pump start alternation is automatic, following a preset time (parameter available in the frequency converter). Electric pump starts and stops are determined based on the pressures entered as set values in the menu of the frequency converter.

Example operation of a set of three electric pumps.

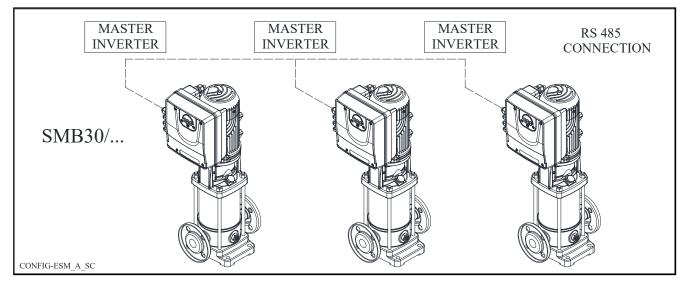
Each electric pump is controlled by a frequency converter. The starting priority is changed in accordance with the time set in the relevant parameter field on frequency converter. The speed adjustment will apply to all the electric pumps installed.

((() LOWARA

a xylem brand


When the water request decreases, the electric pumps stop in succession.

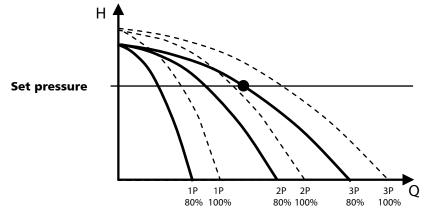
The electric pumps connected to the frequency converter keep the pressure constant by modulating the number of motor revs.


The acceleration and deceleration of the electric pump, both at start-up and switch off, is of the soft type.

This helps to reduce water hammer and ensures a quiet operation of the booster set.

Lowara SMB series booster sets guarantee constant pressure of the system as in the following example:

Example: multistage vertical electric pumps e-SV Smart series



SMB BOOSTER SETS SERIES DESCRIPTION OF OPERATION

When the pressure decreases, an electric pump starts, adjusting the motor speed so that the set pressure value can be guaranteed. When the demand for water increases, the other electric pumps also start in sequence, at variable speed, to keep the pressure at a constant level.

((() LOWARA

a xylem brand

When the demand for water decreases, the electric pumps switch off in succession. The number of revolutions of the first electric pump switched on decreases to a set minimum before switching off.

Regulating the constant pressure value

SMB series booster sets guarantee constant pressure of the system even during frequent variations in water consumption. The system pressure value is measured by the pressure transducers connected to the delivery manifold.

The value found is compared with the set value. The comparison between the measured pressure and the set pressure is performed through the internal "controller" of frequency converter, which manages the motor speed acceleration and deceleration ramps (frequency), changing the performance of the electric pump during the time.

In case of fault of one of the frequency converters, the others will remain active and will continue to guarantee the control of the other electric pumps and the constant pressure.

Type of control

SMB series booster sets use one or more sensors as a standard device to control pressure.

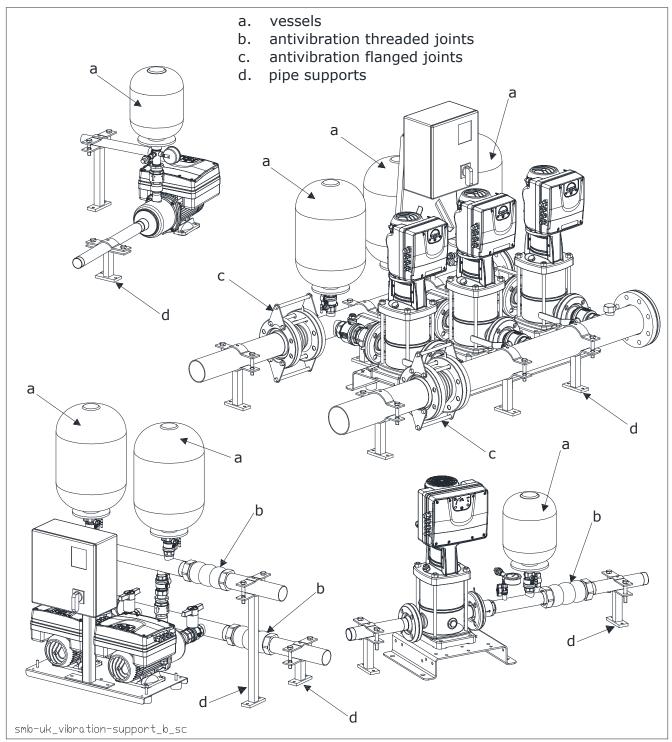
For each booster set, there are as many sensors as the number of electric pumps installed. In case of fault of one of the transducer, the converter connected to the electric pump stops working. It is also possible to change the unit of measure into bar, psi, m³/h, °C, °F, l/sec, l/min, %. In this case, different transducers may be used, depending on the selected measure, such as flow or temperature transducers.

Cyclical exchange of pumps

In the SMB series, electric pump start is alternated according to a time set for each pump, through a clock in the frequency converter menu.

Additional protection against dry running

Protection against dry running activates when the water reserve falls below the minimum level guaranteed for suction. The level can be checked using a float switch, a minimum pressure switch, an external contact, or level probes. For the latter, the probes must be connected to the adjustable sensitivity electronic module. The control panel is already preset for the installation of this module.


Minimum delivery pressure protection

The minimum delivery pressure function can be managed by entering the pressure value in the menu of the frequency converter, which will receive the signal through the pressure transducer at the delivery.

a xylem brand

SMB BOOSTER SETS SERIES INSTALLATION

The booster sets must be installed in areas protected against frost and with adequate ventilation to cool the motors. It is a good practice to connect the booster set to the suction and delivery pipes of the system inserting vibration-damping joints to limit the transmission of vibrations and resonance to the system.

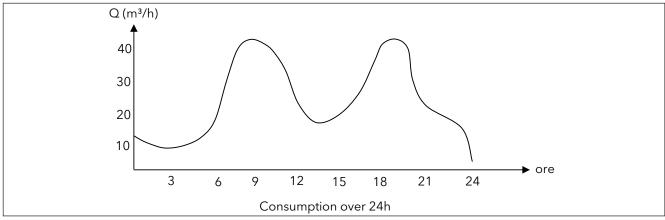
The booster set is connected to pressurised tanks.

These tanks can avoid any problems due to water hammer that is created due to the sudden stopping of the electric pumps running at a fixed speed. For this type of system, diaphragm expansion vessel (hydro tube) are installed in the delivery piping for perform a pressure dampening function.

Due to their design, variable-speed booster sets can satisfy users' demands by moderating the electric pump speed. Considering also that variable-pressure sets are very sensitive to swings of pressure in the system, the use of vessels allows the pressure to stabilise when requests are low or inexistent, and avoids the electric pumps remaining in operation at minimum speed without stopping.

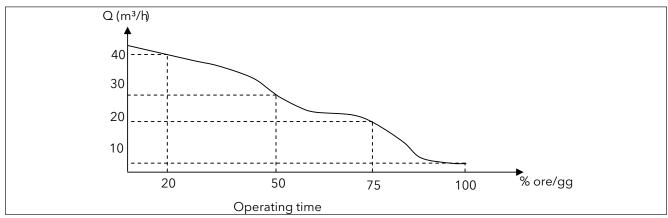
SMB BOOSTER SETS SERIES CHOICE AND SELECTION

The following conditions should be considered when choosing a booster set:


- The system's flow rate and pressure requirements should be met.
- The unit must not be oversized, avoiding unnecessary installation and running costs.

Generally water distribution systems such as those for domestic water supply or for large agglomerates such as hospitals, hotels or similar, have "variable" water consumption i.e. in a 24-hour period there may be sudden variations in consumption that are difficult to foresee. A pattern of consumption may occur in 24 hours, but the daily percentage of unit operation may also occur at various flow rates.

((() LOWARA


a xylem brand

Generally the definition of flow rate for these types of systems is based on either the "probability calculation" which is a very complex system of calculation, or based on tables or diagrams in the national standards which provide guidelines for the sizing of the systems and therefore for calculating the maximum simultaneous flow rate.

The operating time of the unit still calculated over 24h, gives us a view of the daily percentage of operation at the various flow rates.

This means that there may be daily peaks where the maximum flow rate requested is concentrated in a short space of time. In the example given below, it can be seen that in 100% of the time there is a consumption of 4 m³/h, while in 20% of the operating time there is a consumption of 40 m³/h.

When selecting the booster set the consumption figure of the system must be considered, which is generally supplied by the person who designed the system. For systems where consumption varies continuously and suddenly over time it is advisable to install SMB series booster sets with variable regulation of the electric pump speed.

The calculation of the size of the booster set (its performance and the number of electric pumps) is based on the takeoff point and therefore on the consumption value which takes the following factors into account:

- The value of the peak in consumption
- Efficiency
- NPSH
- Standby pumps
- Diaphragm tanks

SMB BOOSTER SETS SERIES CHOICE AND SELECTION

By adjusting their operation over time, variable-speed booster sets give the end user energy savings which can be calculated directly on the control board with a metering module fitted in the electric control panel.

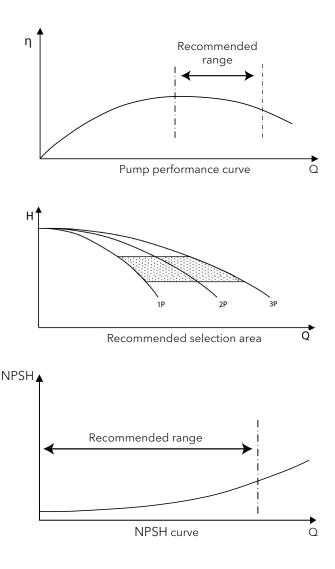
This allows checking of the system yield, especially in complex systems with many users and many ranges of consumption. It is possible to install a standby electric pump if it is necessary to have some kind of additional safety in the pump station. This is typical in systems of a certain importance, such as hospitals or factories, or in the field of crop irrigation.

SMB series booster sets must also be equipped with expansion vessels (for the size of the vessels, see the specific chapter in this catalogue).

A single vessel or several smaller vessels can be installed on the delivery of the booster set, always taking the total capacity into account.

Expansion vessels avoid the risk of water hammer, which is harmful for both the system and the electric pumps.

Generally for systems with highly variable or sudden variations in consumption, it is recommended to install a booster set with variable electric pump speed, such as the SMB series, to guarantee constant pressure.


What type of electric pump to choose?

Generally, the selection of electric pump is based on the maximum duty point of the system, which is usually the highest possible. The maximum request value is normally for short periods, so the electric pump must also be able to satisfy variable requests throughout its time in service. Generally the choice of the electric pump, based on the performance curve, should fall around the maximum efficiency point. The pump must ensure operation within its rated performance.

Since the unit is sized according to the maximum possible consumption, the maximum duty point of the electric pumps must be in the area on the right of the performance curve so that, if there is a fall in consumption, the efficiency remains high.

If we make a choice on the characteristic curve of the electric pump, we can see that the optimum working area where the booster works is represented by the following graph:

Another factor to be considered when choosing the electric pumps is its NPSH value. Never choose a electric pump where the maximum duty point is too far to the right of the NPSH curve. This risks not having good electric pump suction, which may be aggravated by the type of installation (where negative suction is possible). In these cases there is the risk of cavitation. The NPSH of the electric pump must always be checked at the maximum flow rate requested.

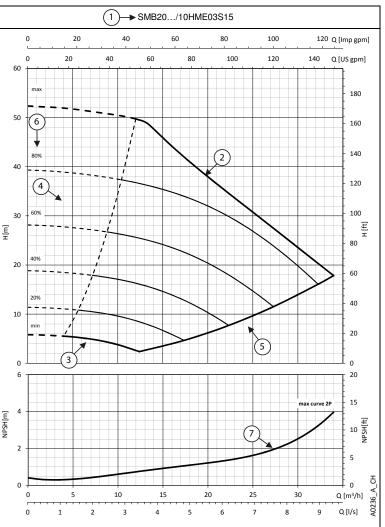
((() LOWARA

a xylem brand

a xylem brand SMB BOOSTER SETS SERIES HOW TO READ BOOSTER SETS WITH e-SM DRIVE CURVES

To exploit to the maximum potential of SMB BOOSTER SETS it's important to properly read working curves shown in the relevant charts.

(1) **Booster set model**: for booster single pump unit, SMB10, refer to name of pump. Example: 1SVE05..003

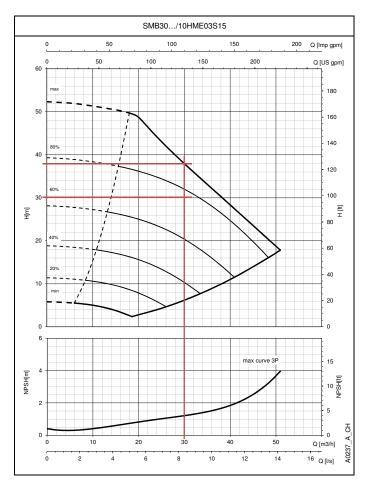

② Maximum speed curve

- 3 Minimum speed curve: it refers to the minimum rpm level the motor can work at, it's calculated depending on the model of pump maximizing for each one the working area and allowing the highest system flexibility.
- (4) The area with dotted lines is where he pump could only operate intermittently for short periods of time.
- Each intermediate curve between max and min speed shows the percentage of load the system is working at synchronous mode (all pumps work at the same speed); it's easy to read also from the LED speed bar on the HMI keypad: at 90% there will be 9 led, at 80% there will be 8 and so on.


Example: at 60% there will be 6 lit led's as in figure.

- (6) The part load percentage is calculated depending on maximum speed (max, 100%) and minimum speed (min, equal to 0%, which is the minimum part load step, below it the drive stays powered up but cannot work).
- **NPSH**: is the net positive suction head of booster set with all pumps working at synchronous mode and at the maximum speed.

Load control: the booster set SMB series controls and limits power consumption at high flow/low head, in this way the motor stays protected from overload and ensure a longer life of pump+motor+drive system.


(LOWARA

SMB BOOSTER SETS SERIES SELECTING THE PUMPS

The choice of electric pump is therefore based on the characteristic curve of the electric pump depending on the flow rate and the pressure required for the system. Starting from the required flow rate, a vertical line is drawn until it meets the horizontal line of the required pressure. The point of intersection of the lines gives both the type and the number of electric pumps necessary for the system.

The example alongside refers to a required flow rate of 30 m³/h and a pressure of 30 m water column

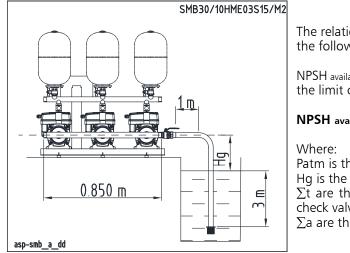
As shown in the operating curves on page <u>119</u>, the selection requires three 10HME03S electric pumps.

Moreover the take-off point falls in the npsh area farthest to the left and therefore in an area with a low cavitation risk.

The values obtained are those for the performance of the pumps. A correct check of the net pressure value must be made due to the intrinsic load loss of the booster set and the conditions of installation. For this reason it is recommended to see the specific chapter in this catalogue.

NPSH

The minimum operating values that can be reached by the pump suction are limited by the appearance of cavitation. Cavitation consists in the formation of steam pockets in the liquid when the local pressure reaches a critical value. A critical value is when the local pressure is equal or just below the pressure of the liquid steam.


Steam cavitation flows with the current. When it reaches a higher pressure area, condensation of the contained steam occurs. The pockets collide, causing pressure waves that are transmitted to the walls, which are therefore subjected to stress cycles that can cause deformation and then breaks due to fatigue. This phenomena, characterised by a metallic noise due to the hammering of the walls, is called incipient cavitation. Cavitation damage can be made worse by electrochemical corrosion, and by local temperature increases due to the plastic deformation of the walls.

The materials with the highest resistance to heat and corrosion are alloyed steels, and particularly austenitic steels. The conditions that cause cavitation can be predicted by calculating the total suction height, indicated in the technical literature with the acronym NPSH (Net Positive Suction Head).

The NPSH represents the total energy (in m) of the flow measured at the suction in incipient cavitation conditions, net of the steam pressure (in m) of the fluid at the input of the pump.

SMB BOOSTER SETS SERIES SUCTION CONDITIONS

Once the type and the number of electric pumps of the set have been identified, the suction conditions must also be assessment. Below is an example of the assessment of the suction lift installation conditions, in relation to the previously described case: in suction lift installation, it is necessary to calculate the maximum Hg height which must not be exceeded due to safety reasons, to avoid cavitation, and therefore the unpriming of the pump itself.

The relation that must assessed, and which connects this value, is the following:

NPSH $_{\text{available}} \geq$ NPSH $_{\text{required}}$, when the equality condition represents the limit condition.

NPSH available = Patm + Hg - $\sum t - \sum a$

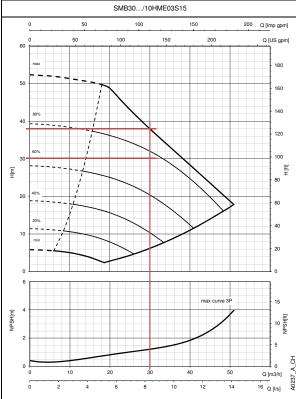
Patm is the atmospheric pressure, equal to 10,33 m Hg is the geodetic level difference Σ t are the pressure drops for suction components such as foot check valve, suction piping, curve, gate valve. Σ a are the pressure drops for suction set branch.

NPSH requested is a parameter obtained from the performance curve; in our case, at the flow of each pump equal to 10 m³/h, it corresponds to 1,2 m (page <u>119</u>). Before calculating the NPSH available, it is necessary to calculate the pressure drops at the suction, using the tables on page <u>135-136</u>, and taking into account the material, such as the type of stainless steel for the piping and cast iron for the valves.

The total sum of the pressure drops Σ t for suction components is made in the following way, considering that the diameter of the suction piping is DN65, equal to the diameter of the suction manifold of the set (page <u>63/68</u>).

Calculation of suction drops $\sum c$ for cast iron components Equivalent piping length for DN65 foot check valve = 3 m Equivalent piping length for DN65 gate valve = 0,2 m Total equivalent length = 3 + 0,2 = 3,2 m Pressure drops in the suction piping (cast iron) $\sum c = 3,2 \times 17,6/100 = 0,56$ m

Calculation of suction drops \sum s for stainless steel components Equivalent piping length for DN65 90° curve = 1,3 m Total equivalent length = 1,3 m Horizontal suction pipe length = 1 m Vertical suction pipe length = 3 m Pressure drops in the suction piping (stainless steel) \sum s = (1,3 + 1 + 3) x 17,6 x 0,54 / 100 = 0,50 m


Pressure drops for suction components $\Sigma t = \Sigma c + \Sigma s = 0.56 + 0.50 = 1.06 \text{ m}$ The total sum of the pressure drops Σa for suction components is made in the following way, considering that the diameter of the suction piping is DN65, equal to the diameter of the suction manifold of the set (page <u>63/68</u>). Hc pressure drops for suction set branch must be assessed on the B curve (page <u>125</u>, scheme A0536_A_CH); at the flow value of each pump equal to 10 m³/h, a value of Hc = 0,0035 m is obtained Calculation of suction drops Σs for stainless steel components Equivalent piping length for DN65 manifold T fitting = 2,6 m Suction manifold length = 0.85 m Pressure drops in the suction manifold (steel) $\Sigma s = (2,6 + 0.85) \times 17.6 \times 0.54 / 100 = 0.327 \text{ m}$ Pressure drops $\Sigma a = \text{Hc} + \Sigma s = 0.0035 + 0.327 = 0.331 \text{ m}$

Remembering that NPSH available = Patm + Hg - $\Sigma t - \Sigma a$ and that NPSH available \geq NPSH requested we have that Patm + Hg - Σt - Σa must be \geq NPSH requested. Substituting the values we get that 10,33 + Hg - 1,06 - 0,331 \geq 1,2 m (NPSH requested), Hg = 1,2 + 1,06 + 0,331 - 10,33 = -7,74 m, it represents the limit condition for which **NPSH** available = **NPSH** requested

Therefore, in order to guarantee the conditions for the correct operation of the system as far as cavitation risks, it will be necessary to position the pump above the water level, **so that the Hg height is below the limit value of 7,74 m**.

a **xylem** brand

SMB BOOSTER SETS SERIES NET PRESSURE CALCULATION

When selecting SMB booster sets, the performance levels of the pump must be taken into account.

Performance levels are obtained from the characteristic curves of the pumps, and do not take into account any pressure drops due to system piping and valves.

The following example helps the customer to obtain the **correct delivery manifold pressure value**:

by knowing the system operating point Q = 30 m³/h and H = 30 mH₂O (P requested), and the installation height Hg (estimated to 3 m), in order to make the calculations easier we use the pressure drop curves for each single pump on page <u>119</u> of this catalogue.

Assuming that a booster set SMB30/10HME03S with non-return valves on the delivery has been selected, we proceed as follows:

 P net available $\geq \mathsf{P}$ requested, when the equality condition represents the limit condition.

P net available = H – (Hg + Σ t + Σ a + Σ m)

Where:

H head value of booster set Hg is the geodetic level difference (estimated to 3 m) Σ t are the pressure drops for suction components such as foot check valve, suction piping, curve and gate valve. Σ a are the pressure drops for suction set branch

 \sum m are the pressure drops for delivery set branch

The total sum of the pressure drops for suction components $\Sigma t = \Sigma c + \Sigma s = 0,56 + 0,50 = 1,06$ m The total sum of the pressure drops Σt for suction components is made in the following way, considering that the diameter of the suction piping is DN65, equal to the diameter of the suction manifold of the set (page <u>63/68</u>). Hc pressure drops for suction set branch must be assessed on the B curve (page <u>125</u>, scheme A0536_A_CH); at the flow value of each pump equal to 10 m³/h, a value of Hc = 0,0035 m is obtained.

Calculation of suction drops Σ s for stainless steel components Equivalent piping length for DN65 manifold TEE fitting = 2,6 m Suction manifold length = 0,85 Pressure drops in the suction piping (stainless steel) Σ s = (2,6 + 0,85) x 17,6 x 0,54 / 100 = 0,327 m The total pressure drops Σ a for suction components are: Σ a = Hc + Σ s = 0,0035 + 0,327 = 0,33 m

The total sum of the pressure drops \sum m for delivery branch is made in the following way, considering that the diameter of the delivery manifold is DN65, equal to the diameter of the delivery manifold of the set (page <u>63/68</u>). Hc pressure drops for delivery set branch must be assessed on the A curve (page <u>125</u>, scheme A0536_A_CH); at the flow value of each pump equal to 10 m³/h, a value of Hc = 1,8 m is obtained

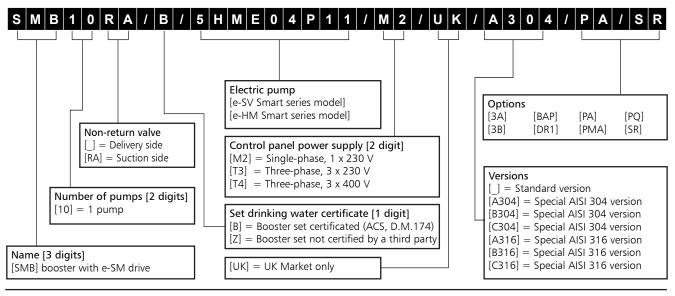
Calculation of delivery drops \sum s for stainless steel components Equivalent piping length for DN65 manifold TEE fitting = 2,6 m Delivery manifold length = 0,85 m Pressure drops in the delivery manifold (steel) \sum s = (2,6 + 0,85) x 17,6 x 0,54 / 100 = 0,327 m

Pressure drops in delivery manifold $\sum m = Hc + \sum s = 1,8 + 0,327 = 2,12 m$ If we analyse the performance of the set at the flow value of 30 m³/h, the head value H is 38 m. The net pressure at the delivery manifold will be P net available = $H - (Hg + \sum t + \sum a + \sum m)$ Substituting the values we get that P net available = 38 - (3 + 1,06 + 0,33 + 2,12) = 31,5When comparing this value with the design value (not taking into account the dynamic energy) we see that 31,5 m > 30 m [P net available > P Required]

The set is therefore capable of meeting system requirements.

SMB10, SMB20, SMB30 SERIES

Variable speed booster sets


e-SV SMART series multistage vertical electric pumps e-HM SMART series multistage horizontal electric pumps

High efficiency motors with integrated e-SM drive Flow rate up to 90 m³/h and pressure up to 16 bar

(LOWARA

a xylem brand

SMB10 BOOSTER SETS SERIES IDENTIFICATION CODE

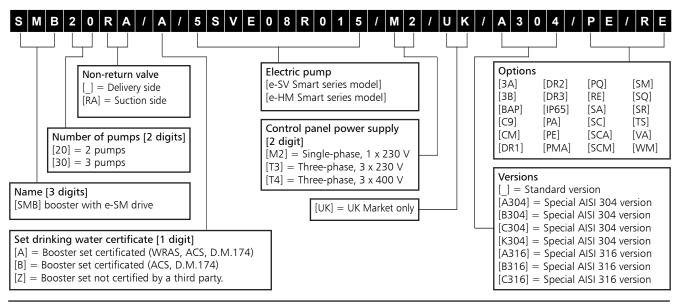
VERSIONS AVAILABLE

A304 Main components in contact with the liquid in AISI 304 stainless steel or higher.

- Galvanised screws and bolts. Flanges not in contact with the liquid galvanised (Available in the Z version).
- B304 Main components in contact with the liquid in AISI 304 stainless steel or higher. Screws and bolts in AISI 304 stainless steel or higher. Flanges not in contact with the liquid in AISI 304 stainless steel (Available in the Z version).
- C304 Main components in contact with the liquid in AISI 304 stainless steel or higher. Base, brackets, supports, screws and bolts in AISI 304 stainless steel or higher. Flanges not in contact with the liquid in AISI 304 stainless steel or higher. Valves fully made of AISI 304 stainless steel or higher (body, heads, disc) (Available in the Z version).
- A316 Main components in contact with the liquid in AISI 316 stainless steel or higher. Galvanised screws and bolts. Flanges not in contact with the liquid galvanised (Available in the Z version). *
- B316 Main components in contact with the liquid in AISI 316 stainless steel. Screws and bolts in AISI 316 stainless steel. Flanges not in contact with the liquid in AISI 316 stainless steel (Available in the Z version). *
- C316 Main components in contact with the liquid in AISI 316 stainless steel. Base, brackets, supports, screws and bolts in AISI 316 stainless steel. Flanges not in contact with the liquid in AISI 316 stainless steel. Valves fully made of AISI 316 stainless steel (body, heads, disc) (Available in the Z version). *

* Vessel in AISI 304 only.

OPTIONS


- 3A Set with 1A certified pumps (Factory test report issued from end of line, QH curve included).
- 3B Set with 1B certified pumps (Test bulletin issued by Sala Audit (Audit Room); it includes QH curve, output and power).
- BAP High pressure pressure switch on the delivery side. **
- DR1 Set with 1 optical sensor for lack/presence of water, installed on the suction side.
- PA Minimum pressure pressure switch on the suction side, for protection against dry running. **
- PMA Minimum pressure pressure switch and vacuum pressure gauge for protection against dry running, installed on the suction side. **
- PQ Set for aqueduct installation (with pressure gauge/ pressure switches/transmitters oversized by one size).
- SR Without non-return valve.

** These options are not feasible concurrently in the same unit.

ING LOWARA

a xylem brand

SMB20, SMB30 BOOSTER SETS SERIES **IDENTIFICATION CODE**

VERSIONS AVAILABLE

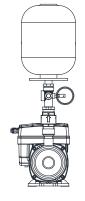
A304 Main components in contact with the liquid in AISI 304 stainless steel or higher.

- Galvanised screws and bolts. Flanges not in contact with the liquid galvanised (Available in the Z version). B304 Main components in contact with the liquid in AISI 304 stainless steel or higher. Screws and bolts in AISI 304
- stainless steel or higher. Flanges not in contact with the liquid in AISI 304 stainless steel (Available in the Z version).
- C304 Main components in contact with the liquid in AISI 304 stainless steel or higher. Base, brackets, supports, screws and bolts in AISI 304 stainless steel or higher. Flanges not in contact with the liquid in AISI 304 stainless steel or higher. Valves fully made of AISI 304 stainless steel or higher (body, heads, disc) (Available in the Z version). K304 Baseplate made of AISI 304.
- A316 Main components in contact with the liquid in AISI 316 stainless steel or higher. Galvanised screws and bolts. Flanges not in contact with the liquid galvanised (Available in the Z version). Main components in contact with the liquid in AISI 316 stainless steel. Screws and bolts in AISI 316 stainless steel.
- B316 Flanges not in contact with the liquid in AISI 316 stainless steel (Available in the Z version).
- C316 Main components in contact with the liquid in AISI 316 stainless steel. Base, brackets, supports, screws and bolts in AISI 316 stainless steel. Flanges not in contact with the liquid in AISI 316 stainless steel. Valves fully made of AISI 316 stainless steel (body, heads, disc) (Available in the Z version).

OPTIONS

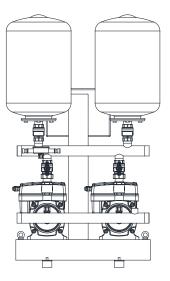
- Set with 1A certified pumps (Factory test report issued from end of line, QH curve included). 3A
- 3B Set with 1B certified pumps (Test bulletin issued by Sala Audit (Audit Room); it includes QH curve, output and power).
- BAP High pressure pressure switch on the delivery manifold.
- Delivery manifold turned by 90°, curves. It is not possible to install expansion vessels directly on the manifold. C9 Suction or delivery manifold larger than standard size. CM
- DR1 Set with 1 optical sensor for lack/presence of water, installed on the suction manifold.
- DR2
- Set with 2 optical sensors for lack/presence of water (fixed to each pump). Set with 3 optical sensors for lack/presence of water (fixed to each pump). DR3
- IP65 IP65 protection degree control panel.
- Minimum pressure pressure switch on the suction manifold, for protection against dry running. PA PE Control panel with emergency button.
- Minimum pressure pressure switch and vacuum pressure gauge for protection against dry running, installed PMA on the suction manifold.
- PO Set for aqueduct installation (with pressure gauge/ pressure switches/transmitters oversized by one size).
- RE Control panel with condensation resistance, controlled by a thermostat.
- SA Without suction: without suction valves and without suction manifold.
- SC Set without control devices such as pressure switches and transmitters; with pressure gauge.
- SCA Without suction manifold (but with suction valves).
- SCM Without delivery manifold (without pressure switches, transmitters and pressure gauge; with deliveryvalves).
- SM
- Without delivery: without delivery valves and without delivery manifold. Booster set without control panel and bracket; with pressure transmitters and e-SM drive. SQ
- SR Without non-return valve.
- Set with electric pumps with special seals. ΤS
- VA Control panel with digital voltmeter and ammeter.
- Wall mounted control panel; cables L=5m. WM

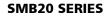
SMB BOOSTER SETS SERIES RANGE


The standard range of SMB series variable-speed booster sets includes models with 1, 2 and 3 electric pumps in different configurations, to adapt to the specific needs of each application.

Specifications:

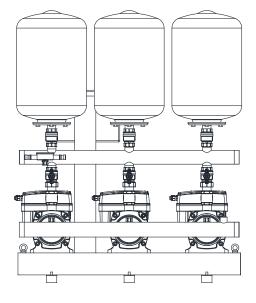
• Single-phase and three-phase power supply, variable speed and control by pressure transducers and e-SM frequency converter drives, integrated with permanent magnets motors.


SMB10 SERIES


- One electric pump e-SVE, e-HME series.
- Head up to 158 m.
- Flow rate up to 30 m³/h.

(LOWARA

a xylem brand



- Two electric pumps e-SVE, e-HME series.
- Head up to 158 m.
- Flow rate up to 60 m³/h.

SMB30 SERIES

- Three electric pumps e-SVE, e-HME series.
- Head up to 158 m.
- Flow rate up to 90 m³/h.

e-SM DRIVE GENERAL DESCRIPTION

Background and context

In every sector, from construction and industry to agriculture and building services the need for intelligent, compact and high-efficiency pumping systems is constantly growing.

That's why Lowara has developed the **e-SM drive**: an integrated intelligent pumping system with electronically driven, permanent magnet motor (IE5 efficiency level).

The integrated control system, combined with the high performance, power and efficiency from the motor and hydraulics, guarantees impressively low operating costs. You also benefit from flexibility, precision and its ultra-compact size.

Savings

The electronics and permanent magnet motor are highly efficient and minimize power losses while transferring maximum energy to the hydraulic parts of the pump.

The refined control system with integrated microprocessor adjusts the motor speed, matching the required operating point of the pump or system requirements.

This reduces demand on electricity according to the required working conditions.

This creates economies, especially in systems where pump demand varies over time.

Flexibility

The compact size, low loss and increased control make the e-SM drive a good choice in applications and systems where fixed speed pumps are commonly used. It is easy to integrate in control and regulation loops thanks to the wide availability of compatible communication protocols, including analog and digital inputs. The pump is supplied with a pressure sensor.

Ease of use and commissioning

e-SM drive has an intuitive interface that guides the user through the installation, and an easily accessible area for connections.

The control system is integrated and no additional external electrical panel is required.

Application sectors

- Water supply systems in residential buildings
- Air conditioning
- Water treatment plants
- Industrial installations

e-SM System

- Single-phase power supply: 220-240V, 50/60 Hz
- Three-phase power supply:
- from 0,37kW to 1,5kW: 220-240V/380-415V 50/60 Hz - 2,2kW: 400V +/- 10%, 50/60 Hz
- Power up to 1,5kW for single-phase version
- Power up to 2,2kW for three-phase version

Protection class IP55

• Can be linked up to 3 pumps

Motor

- IE5 efficiency level (IEC TS 60034-30-2:2016)
- Synchronous electric motor with permanent magnets, (TEFC), closed structure, air-cooled

(((e) Lowara

a xylem brand

- Insulation class 155 (F)
- Overload protection and locked rotor with automatic reset incorporated

Optional components: Sensors

The following sensors are available for electric pump equipped with e-SM drive:

- Pressure-transducer
- Level-sensor.

PUMPS WITH e-SM DRIVE GENERAL DESCRIPTION

e-SV Smart (e-SVE)

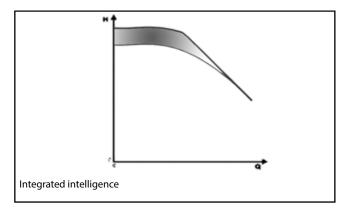
Pump

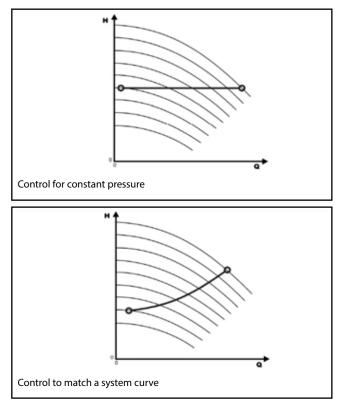
- Flow rate: up to 30 m³/h
- Head: up to 136 m
- Ambient temperature: from -20°C to +50°C without performance penalty
- Temperature of pumped liquid up to +120°C for single-phase motor versions
- Maximum operating **pressure**:
 - 1, 3, 5, 10, 15, 22SV with oval flanges: 16 bar (PN16) at 50°C.
 - 1, 3, 5, 10, 15, 22SV with round flanges or Victaulic[®], Clamp,o DIN 11851 connections: 25 bar (PN 25) a 50°C.
- Vertical multistage centrifugal pump. All metal parts in contact with the pumped liquid are made of stainless steel.
- F: round flanges, in-line delivery and suction ports, AISI 304.
- **R**: round flanges, delivery port above the suction port, with four adjustable positions, AISI 304.
- Further choice possibilities among the following versions:
 - T: oval flanges, in-line delivery and suction ports, AISI 304.
 - N: round flanges, in-line delivery and suction ports, AISI 316.
- Reduced axial thrusts enable the use of **standard motors** that are easily found in the market.
- Mechanical seal according to EN 12756 (ex DIN 24960) and ISO 3069 for 1, 3, 5SV and 10, 15, 22SV (≤ of 4 kW) series.
- Balanced mechanical seal according to EN 12756 (ex DIN 24960) and ISO 3069, which can be replaced without removing the motor from the pump for 10, 15 and 22SV (≥ of 5,5 kW) series.
- Seal housing chamber designed to prevent the accumulation of air in the critical area next to the mechanical seal.
- A second plug is available for 10, 15, 22SV series.
- Easy maintenance. No special tools required for assembly or disassembly.
- The hydraulic performances meet the tolerances specified in ISO 9906:2012.

e-HM Smart (e-HME)

Pump

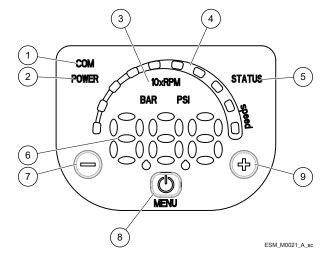
- Flow rate: up to 29 m³/h
- Head: up to 158 m
- Ambient temperature: from -20°C to +50°C without performance penalty
- Temperature of pumped liquid up to +120°C for single-phase motor versions
- Maximum operating pressure: 16 bar (PN 16)
- Connections: Rp threaded for both suction and discharge manifold
- The hydraulic performances meet the tolerances specified in ISO 9906:2012.



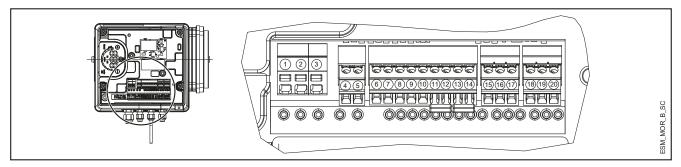

e-SM DRIVE SERIES

Integrated intelligence: The electronic control of the motor enables a 20% increase in performance compared to an equivalent fixed speed pump

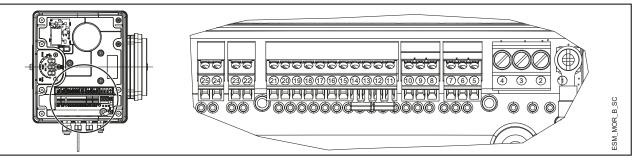
(area highlighted in figure "Integrated intelligence").



Adjustment: This is possible both at constant pressure and according to the characteristic curve of the system, based on the customer's preferences. Another option is according to an external signal or at a preset speed.


Intuitive and simple interface: You can control the unit from just three buttons, with an easy to read display for parameters and alarms, designed for complete control of system operation.

- (1) Communication LED
- 2 Power on LED
- (3) Unit of measure LED
- ④ Speed LED bar
- 5 Status LED
- 6 Numeric display
- 😑 decrease key \bigcirc
- 8 9 on/off and menu key
 - 🕀 increase key


a xylem brand

e-SM DRIVE SERIES SINGLE-PHASE TERMINAL BOX

REF.	ITEM	DESCRIPTION								
4	-Fault Signal	COM - error status relay								
5		NO - error status relay								
6	Auxiliary Voltage Supply	Auxiliary voltage supply +15 VDC								
7	Analog input 0-10V	Actuator mode 0-10 V input								
8		GND for 0-10 V input								
9	External Pressure sensor [also Differential]	Power supply external sensor +15 VDC								
10		External sensor 4-20 mA input								
11	External Start/Stop	External ON/OFF input reference								
12		External ON/OFF input								
13	External Lack of Water	Low water input								
14		Low water reference								
15		RS485 port 1: RS485-1N B (-)								
16	Communication bus	RS485 port 1: RS485-1P A (+)								
17		Electronic GND								
18		RS485 port 2: RS485 port 2: RS485-2N B (-) active only with optional module								
19	Communication bus	RS485 port 2: RS485 port 2: RS485-2P A (+) active only with optional module								
20		Electronic GND								
		MorsM-en_a_sc								

THREE-PHASE TERMINAL BOX

REF.	ITEM	DESCRIPTION
5		Electronic GND
6	Communication bus	RS485 port 1: RS485-1P A (+)
7		RS485 port 1: RS485-1N B (-)
8		Electronic GND
9	Communication bus	RS485 port 2: RS485 port 2: RS485-2P A (+) active only with optional module
10		RS485 port 2: RS485 port 2: RS485-2N B (-) active only with optional module
11	External Lack of Water	Low water reference
12		Low water input
13	External Start/Stop	External ON/OFF input reference
14		External ON/OFF input
15	External Pressure sensor	External sensor 4-20 mA input
16		Power supply external sensor +15 VDC
17	External Pressure sensor [also Differential]	External sensor 4-20 mA input
18		Power supply external sensor +15 VDC
19	Analog input 0-10V	GND for 0-10 V input
20		Actuator mode 0-10 V input
21	Auxiliary Voltage Supply	Auxiliary voltage supply +15 VDC
22	Motor running signal	Normally open contact
23		Common contact
24	Fault Signal	NO - error status relay
25		COM - error status relay

22

SMB20, SMB30 BOOSTER SETS SERIES CONTROL PANEL

Control and protection panel for electric pumps with integrated frequency converters:

- power supply single-phase 1x230 V +/-10%, 50/60Hz (SMB.../M2)
- power supply three-phase 3x400 V +/-10%, 50/60Hz (SMB.../T4)
- power supply three-phase 3x230 V +/-10%, 50/60Hz (SMB.../T3)

IP55 protection.

Metal for sets with two and three pumps. The IP65 degree is optional (SMB.../IP65)

Main characteristics:

- Automatic switch with thermal magnetic protection for each e-SM drive frequency converter.
- Protection against dry running.
 Protection against dry running activates when the water reserve falls below the minimum level guaranteed for suction. The level can be checked using a float switch, a minimum pressure switch, an external contact, or level probes. For the latter, the probes must be connected to the adjustable sensitivity electronic module. The control panel is already preset for the installation of this module.
- Free contact for fault diagnostic status, for each frequency converter. Electrical contact normally open.

For booster sets requiring a wall mounted control panel (SMB.../WM), the panel is supplied with 5 metre cables.

Other options available:

- SMB.../PA
- SMB.../PE
- SMB.../RE
- SMB.../VA

See the option description on page <u>17</u>.

In SMB10 booster set series, control panel is available as accessory.

SMB10 BOOSTER SETS SERIES MAIN COMPONENTS

- **Non return valve** on the delivery of each electric pump, spring type.
- **Delivery side** with threaded ends. It is 5-way connection type.
- **Pressure gauge and transmitters** for control, installed on the delivery side of the set.
- **Pressure tank** 8lt or 24lt depending on the electric pump model
- Support base for SMB10../SVE

Optional components:

Sensors

The following sensors are available for electric pump equipped with e-SM drive:

- Pressure-transducer
- Level-sensor.

SMB20, SMB30 BOOSTER SETS SERIES MAIN COMPONENTS

- Main on-off valves at the suction and delivery of each electric pump, ball type.
- Non return valve on the delivery of each electric pump, spring type.
- **Suction manifold** with threaded ends. Threaded fitting for filling the booster set.
- **Delivery manifold** with threaded ends. It has R1" threaded fittings and isolation valve with drain cock and Hydrotube (depending on the maximum head of the pump, 20/24 It size)
- **Pressure gauge and transmitters** for control, installed on the delivery manifold of the set.
- Control panel.
- Various fittings for the connections.
- **Support base** for the pump set and control panel bracket.

Optional components:

Sensors

The following sensors are available for electric pump equipped with e-SM drive:

- Pressure-transducer
- Level-sensor.

Versions available

Valves and main components made of AISI 304 or AISI 316 stainless steel; versions: SMB.../A304, SMB.../B304, SMB.../C304, SMB.../A316, SMB.../B316, SMB.../C316

Available in the Z version.

Accessories on request:

- Devices **for protection against dry running** in one of the following versions:
- float switch
- level probes (electodes) kit
- minimum pressure switch

Vibration dampers

Control panel

Versions available

Manifolds, valves, flanges, base and main components made of AISI 304 or AISI 316 stainless steel; versions: SMB.../A304, SMB.../B304, SMB.../C304, SMB.../A316, SMB.../B316, SMB.../C316

Available in the Z version.

Accessories on request:

- Devices **for protection against dry running** in one of the following versions:
- float switch
- level probes (electodes) kit
- minimum pressure switch
- **Diaphragm expansion vessel kit** Hydrotube with on-off valve, depending on the maximum head of the pump:
- 24 lt, 8 bar hydro tube kit
- 24 lt, 10 bar hydro tube kit
- 24 lt, 16 bar hydro tube kit
- 20 lt, 25 bar hydro tube kit
- Vibration dampers sized depending on the set. In some sets, vibration dampers are provided not assembled; installation is care of the customer.

SPECIAL EQUIPMENT ON REQUEST (Contact the Sales and Technical Assistance Service)

- Sets with special valves.
- Sets with stainless steel expansion vessels.

For more information about available accessories, please refer to standard catalog.

SMB10 BOOSTER SETS SERIES MATERIAL TABLE

DENOMINATION	SMB10 (STANDARD)	SMB10/A304	SMB10/A316
Manifolds	AISI 304	AISI 304	AISI 316
On-off valves	Nickel-plated brass	AISI 316	AISI 316
Non-return valves	Brass	AISI 304	AISI 316
Pressure switches	Galvanized steel/AISI 301	AISI 301	AISI 301
Pressure transmitters	AISI 304	AISI 304	AISI 304
Caps/plugs	AISI 304 / 316	AISI 304 / 316	AISI 316
Slinding/Blind Flanges (not in contact with liquid)	Galvanized steel	Galvanized steel *	Galvanized steel *
Welded flanges (contact with liquid)	AISI 304	AISI 304	AISI 316
Fittings	AISI 316	AISI 316	AISI 316
Base**	Painted steel	Painted steel	Painted steel

* B304, C304 version in AISI 304; B316, C316 version in AISI 316

g_smb10_wad-en_b_tm

** Installed in SMB10..SVE booster serie

The SMB10 booster set series with e-SV Smart are equipped with counterflange made of AISI 304 on suction side.

SMB20, SMB30 BOOSTER SETS SERIES MATERIAL TABLE

DENOMINATION	SMB (STANDARD)	SMB/A304	SMB/A316
Manifolds	AISI 304	AISI 304	AISI 316
On-off valves	Nickel-plated brass	AISI 316	AISI 316
Non-return valves	Brass	AISI 304	AISI 316
Pressure switches	Galvanized steel/AISI 301	AISI 301	AISI 301
Pressure transmitters	AISI 304	AISI 304	AISI 304
Caps/plugs	AISI 304 / 316	AISI 304 / 316	AISI 316
Slinding/Blind Flanges (not in contact with liquid)	Galvanized steel	Galvanized steel *	Galvanized steel *
Welded flanges (contact with liquid)	AISI 304	AISI 304	AISI 316
Fittings	AISI 316	AISI 316	AISI 316
Bracket	Galvanized steel/painted steel	Galvanized steel/painted steel	Galvanized steel/painted steel
Base	Painted steel	Painted steel	Painted steel

* B304, C304 version in AISI 304; B316, C316 version in AISI 316

g_smb_wad-en_b_tm

(LOWARA a **xylem** brand

SMB BOOSTER SETS SERIES WORKING LIMITS

The input pressure of the pump, added to the pressure with the port shut off, must not exceed the maximum permitted operating pressure (PN) of the set.

Permitted liquids	Water without gases and corrosive and/or aggressive substances.
Fluid temperature	-10°C to + 80 °C
Ambient temperature**	0°C to + 40 °C
Maximum operating pressure*	Max 16 bar
Minimum input pressure	In line with the NPSH curve and the losses, with a margin of at least 0,5 m
Maximum input pressure	The input pressure added to the pump pressure without flow must be lower than the
Maximum input pressure	maximum operating pressure of the set.
Installation	Internal environment protected from atmospheric agents. Away from heat sources.
Installation	Max altitude 1000 a.s.l. Max humidity 50%, without condensation.
Sound emission	See table
* Higher PN available on request depending on pump typ	pe smb_2p-en_a_ti

* Higher PN available on request depending on pump type

** SMB10 without control panel, max. 50°C

SOUND EMISSION LEVELS

	3600 min ⁻¹		LpA (dB ±2)**				
P2 (kW)	IEC*(HME, VME)	IEC* (SVE)	SMB20	SMB30			
0,37	80	90R	< 70	< 70			
0,55	80	90R	< 70	< 70			
0,75	80	90R	< 70	< 70			
1,1	80	90R	< 70	< 70			
1,5	80	90R	< 70	< 70			
2,2	90	90R	< 70	< 70			

* R=Reduced motor casing size with respect to shaft extension and related flange.

** Noise value of the electric motor only.

SMB_2p-en_b_tr

(LOWARA

a **xylem** brand

SMB10/..SVE BOOSTER SETS SERIES SINGLE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP	MOTOR e-SM SET			1 SET	Q = DELIVERY								
TYPE				*1	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7	
SVE	P _N	TYPE	* P1	208-240 V	m³/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8	
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	L HEAD II		OF COL		NATER		
1SVE05003	0,37	ESM90R/103 SVE	1 x 0,49	2,24	44,7	45,0	45,2	44,6	41,5	35,0	28,1	20,8	
1SVE08005	0,55	ESM90R/105 SVE	1 x 0,68	3,07	71,5	72,0	72,3	71,2	62,3	52,0	41,2	29,6	
1SVE11007	0,75	ESM90R/107 SVE	1 x 0,91	4,04	98,3	99,1	99,3	97,7	85,1	70,9	56,0	40,0	
1SVE15011	1,1 ESM90R/111 SVE		1 x 1,33	5,85	134,1	135,1	135,5	133,8	123,6	103,9	83,3	61,4	
** PUMP	1	MOTOR	e-SN	1 SET				Q = DEL	IVERY				
TYPE				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	86,7	
SVE	P _N	TYPE	* P1	208-240 V	m³/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,2	
Single-phase	kW 1x230 V		kW	Α		I = TOTA	L HEAD II	METRES			NATER		
3SVE03003	0,37	ESM90R/103 SVE	1 x 0,49	2,24	33,4	33,7	33,6	30,7	24,9	19,5	14,0	10,9	
3SVE05005	0,55	ESM90R/105 SVE	1 x 0,69	3,08	55,7	56,2	55,8	46,3	37,1	28,4	19,5	14,4	
3SVE07007	0,75	ESM90R/107 SVE	1 x 0,92	4,06	77,9	78,7	77,2	63,4	50,7	38,6	26,0	18,7	
3SVE09011	1,1	ESM90R/111 SVE	1 x 1,33	5,85	100,2	101,0	100,5	88,8	72,5	56,4	39,9	31,2	
3SVE11015	1,5	ESM90R/115 SVE	1 x 1,78	7,80	122,5	123,3	122,5	117,9	98,4	78,0	57,2	46,3	
** PUMP		MOTOR	e-SN	A SET				Q = DEL					
TYPE		MOTOR		*	l/min 0	23,3	46,7	Q = DLL 70,0	93,3	116,7	140,0	166,7	
SVE	P _N	ТҮРЕ	* P1	, 208-240 ∨	m ³ /h 0	1,4	2,8	4,2	5,6	7,0	8,4	10,0	
Single-phase	kW	1x230 V	kW	A	-			-		UMN OF WATER			
55VE02003	0,37	ESM90R/103 SVE	1 x 0,49	2,24	22,4	22,2	21,8	20,0	16,5	13,3	10,2	6,5	
5SVE03005	0,55	ESM90R/105 SVE	1 x 0,68	3,07	, 33,5	, 33,3	, 32,7	, 29,8	24,5	, 19,8	15,2	, 9,5	
5SVE04007	0,75	ESM90R/107 SVE	1 x 0,91	4,05	44,7	44,4	43,5	40,5	33,4	27,1	20,8	13,3	
5SVE06011	1,1	ESM90R/111 SVE	1 x 1,33	5,86	67,1	66,6	65,3	59,5	49,0	39,6	30,4	19,1	
5SVE08015	1,5	ESM90R/115 SVE	1 x 1,78	7,81	88,8	89,3	, 87,6	82,6	68,3	55,3	42,6	27,9	
						05,5		02,0 00,3 55,3 42,6 2					
** 0.0.40	Τ		- 61	4 CFT	00,0	05,5				,	I		
** PUMP		MOTOR	e-SN	1 SET		1	80.0	Q = DEL		1	240.0		
TYPE	D	MOTOR		*1	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	283,3	
TYPE SVE	P _N	MOTOR	* P ₁	* I 208-240 ∨	l/min 0 m³/h 0	40,0 2,4	4,8	120,0 7,2	160,0 9,6	200,0 12,0	14,4		
TYPE SVE Single-phase	kW	MOTOR TYPE 1x230 V	* P ₁ kW	* I 208-240 V A	l/min 0 m³/h 0 ⊦	40,0 2,4 1 = TOTA	4,8 L HEAD II	120,0 7,2 N METRES	160,0 9,6 OF COLU	200,0 12,0 JMN OF \	14,4 WATER	283,3 17,0	
TYPE SVE Single-phase 10SVE01005	kW 0,55	MOTOR TYPE 1x230 V ESM90R/105 SVE	* P ₁ kW 1 x 0,68	* I 208-240 V A 3,07	l/min 0 m ³ /h 0 H 17,3	40,0 2,4 = TOTA 17,3	4,8 L HEAD II 16,9	120,0 7,2 METRES 16,2	160,0 9,6 OF COLU 13,6	200,0 12,0 JMN OF V 10,4	14,4 WATER 7,1	283,3 17,0 3,3	
TYPE SVE Single-phase 10SVE01005 10SVE02007	kW 0,55 0,75	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE	* P ₁ kW 1 x 0,68 1 x 0,92	* I 208-240 V A 3,07 4,09	l/min 0 m ³ /h 0 H 17,3 24,2	40,0 2,4 = TOTA 17,3 23,9	4,8 L HEAD IN 16,9 23,1	120,0 7,2 N METRES 16,2 21,7	160,0 9,6 OF COLU 13,6 19,3	200,0 12,0 JMN OF V 10,4 14,6	14,4 WATER 7,1 9,7	283,3 17,0 3,3 3,6	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011	kw 0,55 0,75 1,1	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE	* P ₁ kW 1 x 0,68 1 x 0,92 1 x 1,33	* I 208-240 V A 3,07 4,09 5,85	/min 0 m³/h 0 H 17,3 24,2 34,8	40,0 2,4 1 = TOTA 17,3 23,9 34,5	4,8 L HEAD II 16,9 23,1 33,7	120,0 7,2 N METRES 16,2 21,7 32,3	160,0 9,6 OF COLU 13,6 19,3 27,7	200,0 12,0 JMN OF V 10,4 14,6 22,4	14,4 WATER 7,1 9,7 17,1	283,3 17,0 3,3 3,6 11,0	
TYPE SVE Single-phase 10SVE01005 10SVE02007	kW 0,55 0,75	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE	* P ₁ kW 1 x 0,68 1 x 0,92	* I 208-240 V A 3,07 4,09	l/min 0 m ³ /h 0 H 17,3 24,2	40,0 2,4 = TOTA 17,3 23,9	4,8 L HEAD IN 16,9 23,1	120,0 7,2 N METRES 16,2 21,7	160,0 9,6 OF COLU 13,6 19,3	200,0 12,0 JMN OF V 10,4 14,6	14,4 WATER 7,1 9,7	283,3 17,0 3,3 3,6	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011	kw 0,55 0,75 1,1	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE	* P ₁ kW 1 x 0,68 1 x 0,92 1 x 1,33 1 x 1,78	* I 208-240 V A 3,07 4,09 5,85	/min 0 m³/h 0 H 17,3 24,2 34,8	40,0 2,4 1 = TOTA 17,3 23,9 34,5	4,8 L HEAD II 16,9 23,1 33,7	120,0 7,2 N METRES 16,2 21,7 32,3	160,0 9,6 OF COLU 13,6 19,3 27,7 38,1	200,0 12,0 JMN OF V 10,4 14,6 22,4	14,4 WATER 7,1 9,7 17,1	283,3 17,0 3,3 3,6 11,0	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011 10SVE03015	kw 0,55 0,75 1,1	TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE ESM90R/115 SVE	* P ₁ kW 1 x 0,68 1 x 0,92 1 x 1,33 1 x 1,78	* I 208-240 V A 3,07 4,09 5,85 7,81	/min 0 m³/h 0 H 17,3 24,2 34,8	40,0 2,4 1 = TOTA 17,3 23,9 34,5	4,8 L HEAD II 16,9 23,1 33,7	120,0 7,2 N METRES 16,2 21,7 32,3 46,1	160,0 9,6 OF COLU 13,6 19,3 27,7 38,1	200,0 12,0 JMN OF V 10,4 14,6 22,4	14,4 WATER 7,1 9,7 17,1	283,3 17,0 3,3 3,6 11,0	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011 10SVE03015 ** PUMP	kw 0,55 0,75 1,1	TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE ESM90R/115 SVE	* P ₁ kW 1 x 0,68 1 x 0,92 1 x 1,33 1 x 1,78	* I 208-240 V A 3,07 4,09 5,85 7,81	/min 0 m ³ /h 0 H 17,3 24,2 34,8 52,7	40,0 2,4 17,3 23,9 34,5 52,2	4,8 L HEAD IN 16,9 23,1 33,7 51,0	120,0 7,2 METRES 16,2 21,7 32,3 46,1 Q = DEL	160,0 9,6 OF COLU 13,6 19,3 27,7 38,1	200,0 12,0 JMN OF V 10,4 14,6 22,4 30,8	14,4 WATER 7,1 9,7 17,1 23,5	283,3 17,0 3,3 3,6 11,0 15,1	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011 10SVE03015 ** PUMP TYPE	kW 0,55 0,75 1,1 1,5	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE ESM90R/115 SVE MOTOR	* P ₁ kW 1 x 0,68 1 x 0,92 1 x 1,33 1 x 1,78 e-SN	* I 208-240 V A 3,07 4,09 5,85 7,81 * I	/min 0 m³/h 0 H 17,3 24,2 34,8 52,7 //min 0	40,0 2,4 17,3 23,9 34,5 52,2 70,0	4,8 L HEAD II 23,1 33,7 51,0 140,0	120,0 7,2 N METRES 16,2 21,7 32,3 46,1 Q = DEL 210,0	160,0 9,6 0 F COLU 13,6 19,3 27,7 38,1 JVERY 280,0	200,0 12,0 JMN OF V 10,4 14,6 22,4 30,8 350,0	14,4 NATER 7,1 9,7 17,1 23,5 420,0	283,3 17,0 3,3 3,6 11,0 15,1 483,3	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011 10SVE03015 ** PUMP TYPE SVE	kW 0,55 0,75 1,1 1,5 P _N	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE ESM90R/115 SVE ESM90R/115 SVE MOTOR TYPE	* P ₁ kW 1 × 0,68 1 × 0,92 1 × 1,33 1 × 1,78 e-SM * P ₁	* I 208-240 V A 3,07 4,09 5,85 7,81 V SET * I 208-240 V	/min 0 m³/h 0 H 17,3 24,2 34,8 52,7 //min 0	40,0 2,4 17,3 23,9 34,5 52,2 70,0	4,8 L HEAD II 23,1 33,7 51,0 140,0	120,0 7,2 N METRES 16,2 21,7 32,3 46,1 Q = DEL 210,0	160,0 9,6 0 F COLU 13,6 19,3 27,7 38,1 JVERY 280,0	200,0 12,0 JMN OF V 10,4 14,6 22,4 30,8 350,0	14,4 NATER 7,1 9,7 17,1 23,5 420,0	283,3 17,0 3,3 3,6 11,0 15,1 483,3	
TYPE SVE Single-phase 10SVE01005 10SVE02007 10SVE02011 10SVE03015 ** PUMP TYPE SVE Single-phase	kW 0,55 0,75 1,1 1,5 P _N kW	MOTOR TYPE 1x230 V ESM90R/105 SVE ESM90R/107 SVE ESM90R/111 SVE ESM90R/115 SVE ESM90R/115 SVE MOTOR TYPE 1x230 V	* P ₁ kW 1 × 0,68 1 × 0,92 1 × 1,33 1 × 1,78 e-SM * P ₁ kW	* I 208-240 V A 3,07 4,09 5,85 7,81 V SET * I 208-240 V A	//min 0 m ³ /h 0 H 17,3 24,2 34,8 52,7 //min 0 m ³ /h 0	40,0 2,4 1 = TOTA 17,3 23,9 34,5 52,2 70,0 4,2	4,8 L HEAD II 16,9 23,1 33,7 51,0 140,0 8,4	120,0 7,2 N METRES 16,2 21,7 32,3 46,1 Q = DEL 210,0 12,6	160,0 9,6 0 F COLU 13,6 19,3 27,7 38,1 JVERY 280,0 16,8	200,0 12,0 JMN OF 1 10,4 14,6 22,4 30,8 350,0 21,0	14,4 WATER 7,1 9,7 17,1 23,5 420,0 25,2	283,3 17,0 3,3 3,6 11,0 15,1 483,3	

** PUMP		MOTOR e-SM SET			Q = DELIVERY							
TYPE	P _N TYPE			*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	500,0
SVE			* P ₁	208-240 V	m³/h 0	4,2	8,4	12,6	16,8	21,0	25,2	30,0
Single-phase	kW	1x230 V	kW	Α								
22SVE01007	0,75	ESM90R/107 SVE	1 x 0,89	3,95	14,4	14,4	14,1	12,5	9,5	6,3	2,9	
22SVE01011	1,1	ESM90R/111 SVE	1 x 1,34	5,87	20,7	20,8	20,5	18,7	15,1	11,5	7,8	3,2
22SVE02015	1,5	ESM90R/115 SVE	1 x 1,72	7,56	31,4	31,0	30,3	26,7	21,7	16,7	11,0	2,8

Table refers to hydraulic performances with one pump running, max rpm, friction loss not included

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see see technical catalogue of single electric pump

g10_1-22sve-esm-2p50-en_a_th

(LOWARA

a **xylem** brand

SMB10/..HME BOOSTER SETS SERIES SINGLE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	e-Sl	M SET	Q = DELIVERY							
TYPE				* I	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
Single-phase	kW	1x230 V	kW	Α	н		L HEAD II		S OF CO	LUMN O	F WATEF	R
1HME05S03	0,37	ESM80/103 HM	1 x 0,49	2,24	44,7	44,8	44,9	44,1	39,2	32,5	25,7	18,9
1HME08S05	0,55	ESM80/105 HM	1 x 0,69	3,07	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07	0,75 ESM80/107 HM		1 x 0,91	4,04	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11	1,1 ESM80/111 HM		1 x 1,33	5,85	134,0	134,4	134,6	132,3	119,5	99,5	79,6	59,6
1HME17S15	1,5 ESM80/115 HM		1 x 1,77	7,77	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,2
** PUMP		MOTOR	0-51	M SET				Q = DEI				
ТҮРЕ		MOTOR	6-31	*1	l/min 0	13,3	26.7	40.0	53,3	66.7	80.0	86,7
HMES, HMEN	P _N TYPE		* P ₁	208-240 V	m ³ /h 0	0,8	1.6	2.4	3,2	4.0	4,8	5,2
Single-phase	k₩	1x230 V	kW	A	-		L HEAD II	•		•		
3HME03S03	0,37	ESM80/103 HM	1 x 0,49	2,24	33,3	33,9	33,4	31,5	25,6	20,1	14,6	11,8
3HME05S05	0,55	ESM80/105 HM	1 x 0,69	3,07	55,5	56,5	55,7	47,5	38,2	29,4	20,5	16,0
3HME07S07	0,75	ESM80/107 HM	1 x 0,91	4,06	77,6	79,1	78,1	64,9	52,0	39,8	27,5	21,3
3HME09S11	1,1	ESM80/111 HM	1 x 1,33	5,85	99,8	101,8	100,3	93,6	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/115 HM	1 x 1,78	7,80	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1
** 01040	PUMP MOTOR e-SM SET O = DELIVERY											
** PUMP		WOTOK	e-31	VIJEI								
TVDE				* 1	l/min 0	22.2	46.7	70.0	02.2	1167	140.0	170.0
ТҮРЕ НМЕ 5 НМЕ N	P.,	TVDE	* P.	* I 208-240 V	l/min 0 m ³ /h 0	23,3	46,7	70,0	93,3 5.6	116,7	140,0	170,0
HMES, HMEN	P _N kW	TYPE 1x230 V	* P ₁ kW	208-240 V	m³/h 0	1,4	2,8	4,2	5,6	7,0	8,4	10,2
HMES, HMEN Single-phase	kW	1x230 V	kW	208-240 V A	, m³/h 0 H	1,4 = TOTAI	2,8 L HEAD II	4,2 N METRE	5,6 S OF CO	7,0 LUMN O	8,4 F WATEF	10,2
HMES, HMEN	kW 0,37		kW 1 x 0,49	208-240 V A 2,24	m ³ /h 0 H	1,4 = TOTAI 22,4	2,8 HEAD II 21,9	4,2 N METRE 19,8	5,6 S OF CO 16,2	7,0	8,4	10,2 6,0
HMES, HMEN Single-phase 5HME02S03	kW	1x230 V ESM80/103 HM	kW	208-240 V A	, m³/h 0 H	1,4 = TOTAI	2,8 L HEAD II	4,2 N METRE	5,6 S OF CO	7,0 LUMN O 13,0	8,4 F WATEF 9,9	10,2
HMES, HMEN Single-phase 5HME02S03 5HME03S05	kW 0,37 0,55	1x230 V ESM80/103 HM ESM80/105 HM	kW 1 x 0,49 1 x 0,69	208-240 V A 2,24 3,07	m ³ /h 0 H 22,2 33,3	1,4 = TOTAI 22,4 33,6	2,8 HEAD II 21,9 32,9	4,2 N METRE 19,8 29,5	5,6 S OF CO 16,2 24,1	7,0 LUMN O 13,0 19,3	8,4 F WATEF 9,9 14,7	10,2 6,0 8,8
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07	kW 0,37 0,55 0,75	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91	208-240 V A 2,24 3,07 4,05	m ³ /h 0 H 22,2 33,3 44,4	1,4 = TOTAL 22,4 33,6 44,7	2,8 HEAD II 21,9 32,9 43,8	4,2 N METRE 19,8 29,5 40,1	5,6 S OF CO 16,2 24,1 32,8	7,0 LUMN O 13,0 19,3 26,4	8,4 F WATEF 9,9 14,7 20,2	10,2 6,0 8,8 12,2
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15	kW 0,37 0,55 0,75 1,1	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78	208-240 V A 2,24 3,07 4,05 5,85 7,82	m ³ /h 0 H 22,2 33,3 44,4 66,7	1,4 = TOTAI 22,4 33,6 44,7 67,2	2,8 HEAD II 21,9 32,9 43,8 65,8	4,2 1 9,8 29,5 40,1 59,0 80,2	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5	7,0 LUMN O 13,0 19,3 26,4 38,7	8,4 F WATEF 9,9 14,7 20,2 29,5	10,2 6,0 8,8 12,2 17,5
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15	kW 0,37 0,55 0,75 1,1	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/101 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET	m ³ /h 0 H 22,2 33,3 44,4 66,7 88,9	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7	4,2 19,8 29,5 40,1 59,0 80,2 Q = DE	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5	7,0 LUMN 0 13,0 19,3 26,4 38,7 52,8	8,4 F WATER 9,9 14,7 20,2 29,5 40,4	10,2 6,0 8,8 12,2 17,5 24,4
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15 ** PUMP TYPE	kW 0,37 0,55 0,75 1,1 1,5	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-Si	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 Vmin 0	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DE 120,0	5,6 S OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0	10,2 6,0 8,8 12,2 17,5 24,4 283,3
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15 ** PUMP TYPE HMES, HMEN	kW 0,37 0,55 0,75 1,1 1,5 P _N	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM MOTOR TYPE	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-Sl * P ₁	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * 1 208-240 V	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 V/min 0 m³/h 0	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15 ** PUMP TYPE HMES, HMEN Single-phase	kW 0,37 0,55 0,75 1,1 1,5 P _N kW	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM MOTOR TYPE 1x230 V	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-SI * P ₁ kW	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I 208-240 V A	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 Vmin 0 m³/h 0 H	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4 = TOTAI	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8 HEAD II	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2 N METRE	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6 S OF CO	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0 LUMN O	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4 F WATEF	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15	kW 0,37 0,55 0,75 1,1 1,5 P _N kW 0,75	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM MOTOR TYPE 1x230 V ESM80/107 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-SI * P ₁ kW 1 x 0,86	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I 208-240 V A 3,80	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 l/min 0 m³/h 0 H 17,5	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4 = TOTAI 17,5	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8 HEAD II 17,0	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2 N METRE 16,1	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6 5 OF CO 14,7	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0 LUMN O 12,7	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4 F WATEF 10,2	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0 8 6,6
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME06S11 5HME08S15 ** PUMP TYPE HMES, HMEN Single-phase	kW 0,37 0,55 0,75 1,1 1,5 P _N kW	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/115 HM ESM80/115 HM TYPE 1x230 V ESM80/107 HM ESM80/111 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-SI * P ₁ kW	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I 208-240 V A 3,80 5,85	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 //min 0 m³/h 0 H 17,5 34,8	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4 = TOTAI	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8 HEAD II	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2 N METRE 16,1 32,3	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6 5 OF CO 14,7 27,2	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0 LUMN O 12,7 21,9	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4 F WATEF 10,2 16,6	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME08S15 SHME08S15 HMES, HMEN Single-phase 10HME01S07 10HME02S11	kW 0,37 0,55 0,75 1,1 1,5 P _N kW 0,75 1,1	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/111 HM ESM80/115 HM MOTOR TYPE 1x230 V ESM80/107 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-SI * P1 kW 1 x 0,86 1 x 1,33	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I 208-240 V A 3,80	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 l/min 0 m³/h 0 H 17,5	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4 = TOTAI 17,5 34,9	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8 HEAD II 17,0 33,8	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2 N METRE 16,1	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6 5 OF CO 14,7	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0 LUMN O 12,7	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4 F WATEF 10,2	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0 8 6,6 11,1
HMES, HMEN Single-phase 5HME02S03 5HME03S05 5HME04S07 5HME08S15 SHME08S15 HMES, HMEN Single-phase 10HME01S07 10HME02S11	kW 0,37 0,55 0,75 1,1 1,5 P _N kW 0,75 1,1	1x230 V ESM80/103 HM ESM80/105 HM ESM80/107 HM ESM80/115 HM ESM80/115 HM TYPE 1x230 V ESM80/107 HM ESM80/111 HM	kW 1 x 0,49 1 x 0,69 1 x 0,91 1 x 1,33 1 x 1,78 e-SI * P ₁ kW 1 x 0,86 1 x 1,33 1 x 1,78	208-240 V A 2,24 3,07 4,05 5,85 7,82 M SET * I 208-240 V A 3,80 5,85	m³/h 0 H 22,2 33,3 44,4 66,7 88,9 //min 0 m³/h 0 H 17,5 34,8	1,4 = TOTAI 22,4 33,6 44,7 67,2 89,5 40,0 2,4 = TOTAI 17,5 34,9	2,8 HEAD II 21,9 32,9 43,8 65,8 87,7 80,0 4,8 HEAD II 17,0 33,8	4,2 N METRE 19,8 29,5 40,1 59,0 80,2 Q = DEI 120,0 7,2 N METRE 16,1 32,3	5,6 5 OF CO 16,2 24,1 32,8 48,1 65,5 IVERY 160,0 9,6 5 OF CO 14,7 27,2 39,2	7,0 LUMN O 13,0 19,3 26,4 38,7 52,8 200,0 12,0 LUMN O 12,7 21,9	8,4 F WATEF 9,9 14,7 20,2 29,5 40,4 240,0 14,4 F WATEF 10,2 16,6	10,2 6,0 8,8 12,2 17,5 24,4 283,3 17,0 8 6,6 11,1

		MOTOR	e-31	VIJEI	Q = DELIVERY								
TYPE				* I	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	483,3	
HMES, HMEN	P _N TYPE		* P 1	208-240 V	m3/h 0	4,2	8,4	12,6	16,8	21,0	25,2	29,0	
Single-phase	kW	1x230 V	kW	А	н	= Totai	L HEAD II	N METRE	S OF CO	LUMN O	F WATER	ł	
15HME01S11M02	1,1	ESM80/111 HM	1 x 1,33	5,85	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2	
15HME02S15M02	1,5	ESM80/115 HM	1 x 1,79	7,85	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1	

Table refers to hydraulic performances with one pump running, max rpm, friction loss not included

g10_1-15hmes-esm-2p50-en_a_th

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see technical catalogue of single electric pump

ELECTRIC PUMP SINGLE-PHASE TABLE OF ELECTRIC MOTOR DATA

In the range 3000-3600 rpm the nominal motor power is guaranteed. Above 3600 rpm it isn't possible work and the motor is automatically limited; below 3000 rpm it works partially load.

e-SVE

	* 		ction	SPEED	INPUT CURRENT	I	DATA RE	LATED TO	D THE VO	OLTAGE (OF 230V																					
P _N	MOTOR TYPE	C SIZE*		(RPM)**	I (A)	In	COSφ	Tn		η%		IES																				
kW		IEC	Constru Design	min⁻¹	208-240 V	Α		Nm	4/4	3/4	2/4																					
0,37	ESM90R/103 SVE	90R		3000	2,28-1,99	2,08	0,95	1,18	81,3	79,1	74,3	2																				
0,57	ESIVISON IDS SVE	906		3600	2,30-2,02	2,10	0,95	0,98	80,6	77,5	72,0	2																				
0,55	ESM90R/105 SVE	90R		3000	3,27-2,85	2,96	0,97	1,75	83,3	82,2	78,8	2																				
0,55		901	4	3600	3,27-2,85	2,96	0,97	1,46	83,3	81,5	77,5	2																				
0.75	ESM90R/107 SVE	OOP	<u> </u>	3000	4,43-3,84	4,00	0,98	2,39	83,3	83,3	81,5	2																				
0,75		90R	90R	90R	906	906	906	JUK	JUK	JUK	90K	90K	JUK	90R	90R	90R	90R	90R	90R	90R	90R	90R	18/B	3600	4,38-3,79	3,94	0,98	1,99	84,5	83,5	80,6	2
1,10	ESM90R/111 SVE	OOP	>	3000	6,26-5,35	5,64	0,99	3,50	85,7	85,1	82,7	2																				
1,10	ESIVISOR III SVE	90R	90R	90R	90K	906	901	901	JUK	JUK	JUK	JUK	UK	3600	6,20-5,32	5,63	0,99	2,92	85,9	84,6	81,4	2										
1,50	ESM90R/115 SVE	90R		3000	8,57-7,32	7,69	0,99	4,77	85,6	85,7	84,7	2																				
1,50	L SIVISORY I I S SVE	JUE		3600	8,42-7,25	7,62	0,99	3,98	86,3	85,9	84,0	2																				

* R = Reduced size of motor casing as compared to shaft extension and flange.

eSV_Smart-motm_en_a_te

a xylem brand

** The indicated rotational speed are representing the upper and lower limits of the rated power operational speed range.

e-HME

P		Щ	tion	SPEED	INPUT CURRENT	I	DATA RE	LATED T	D THE VO	OLTAGE (OF 230V	
P _N	MOTOR TYPE	c size	Construction Design	(RPM)*	I (A)	In	cosφ	Tn		η%		IES
kW		IEC	D Con	min ^{.1}	208-240 V	Α		Nm	4/4	3/4	2/4	
0,37	ESM80/103 HM	80		3000	2,28-1,99	2,08	0,95	1,18	81,3	79,1	74,3	2
0,57		80		3600	2,30-2,02	2,10	0,95	0,98	80,6	77,5	72,0	2
0,55	ESM80/105 HM	80		3000	3,27-2,85	2,96	0,97	1,75	83,3	82,2	78,8	2
0,55		80		3600	3,27-2,85	2,96	0,97	1,46	83,3	81,5	77,5	
0,75	ESM80/107 HM	80	CIAL	3000	4,43-3,84	4,00	0,98	2,39	83,3	83,3	81,5	2
0,75	ESIVIOU/107 HIVI	80		3600	4,38-3,79	3,94	0,98	1,99	84,5	83,5	80,6	2
1 10	ESM80/111 HM	80	S	3000	6,26-5,35	5,64	0.99	3,50	85,7	85,1	82,7	2
1,10		00		3600	6,20-5,32	5,63	0,99	2,92	85,9	84,6	81,4	2
1,50		80		3000	8,57-7,32	7,69	0,99	4,77	85,6	85,7	84,7	2
1,50	50 ESM80/115 HM	80		3600	8,42-7,25	7,62	0,99	3,98	86,3	85,9	84,0	2

* The indicated rotational speed are representing the upper and lower limits of the rated power operational speed range.

eHM-eVM_Smart-motm_en_a_te

(LOWARA

a **xylem** brand

SMB20/..SVE BOOSTER SETS SERIES SINGLE-PHASE **TABLE OF HYDRAULIC PERFORMANCE**

** PUMP		MOTOR	SMB2	0 SET				Q = DEL	IVERY			
TYPE				* I	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	93,3
SVE	P _N	TYPE	* P ₁	208-240 V	m³/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,6
Single-phase	kW	1x230 V	kW	Α	н	= TOTAI	HEAD I	N METRE	S OF CO	LUMN O	F WATER	
1SVE05003	0,37	ESM90R/103 SVE	2 x 0,49	4,48	44,7	45,0	45,2	44,6	41,5	35,0	28,1	20,8
1SVE08005	0,55	ESM90R/105 SVE	2 x 0,68	6,14	71,5	72,0	72,3	71,2	62,3	52,0	41,2	29,6
1SVE11007	0,75	ESM90R/107 SVE	2 x 0,91	8,08	98,3	99,1	99,3	97,7	85,1	70,9	56,0	40,0
1SVE15011	1,1	ESM90R/111 SVE	2 x 1,33	11,70	134,1	135,1	135,5	133,8	123,6	103,9	83,3	61,4
		MOTOR	C1 400	0.057				0 DEI	D/E D)/			
** PUMP		MOTOR	SMB2	1				Q = DEL				
TYPE		7.05	* 5	* I	l/min 0	26,7	53,3	80,0	106,7	133,3	160,0	173,3
SVE	P _N	ТҮРЕ	* P ₁	208-240 V	m³/h 0	1,6	3,2	4,8	6,4	8,0	9,6	10,4
Single-phase	kW	1x230 V	kW	A		1	1	N METRE				
3SVE03003	0,37	ESM90R/103 SVE	2 x 0,49	4,48	33,4	33,7	33,6	30,7	24,9	19,5	14,0	10,9
3SVE05005	0,55	ESM90R/105 SVE	2 x 0,69	6,16	55,7	56,2	55,8	46,3	37,1	28,4	19,5	14,4
3SVE07007	0,75	ESM90R/107 SVE	2 x 0,92	8,12	77,9	78,7	77,2	63,4	50,7	38,6	26,0	18,7
3SVE09011	1,1	ESM90R/111 SVE	2 x 1,33	11,70	100,2	101,0	100,5	88,8	72,5	56,4	39,9	31,2
3SVE11015	1,5	ESM90R/115 SVE	2 x 1,78	15,60	122,5	123,3	122,5	117,9	98,4	78,0	57,2	46,3
** PUMP		MOTOR	SMB2	0 SET				Q = DEL	IVERY			
TYPE				*	l/min 0	46,7	93,3	140,0	186,7	233,3	280,0	333,3
SVE	P _N	TYPE	* P 1	208-240 V	m³/h 0	, 2,8	, 5,6	8,4	11,2	14,0	16,8	20,0
Single-phase	kW	1x230 V	kW	А		-				-		
5SVE02003	0,37	ESM90R/103 SVE	2 x 0,49	4,48	22,4	22,2	21,8	20,0	16,5	13,3	10,2	6,5
5SVE03005	0,55	ESM90R/105 SVE	2 x 0,68	6,14	, 33,5	33,3	, 32,7	29,8	24,5	, 19,8	, 15,2	, 9,5
5SVE04007	0,75	ESM90R/107 SVE	2 x 0,91	8,10	44,7	44,4	43,5	40,5	33,4	27,1	20,8	13,3
5SVE06011	1,1	ESM90R/111 SVE	2 x 1,33	, 11,72	, 67,1	, 66,6	, 65,3	, 59,5	49,0	, 39,6	, 30,4	, 19,1
5SVE08015	1,5	ESM90R/115 SVE	2 x 1,78	15,62	88,8	89,3	87,6	82,6	68,3	55,3	42,6	27,9
** PUMP		MOTOR	SMB2	1		I	I	Q = DEL		I		1
TYPE		1		* I	l/min 0	80,0	160,0	240,0	320,0	400,0	480,0	566,7
SVE	P _N	TYPE	* P ₁	208-240 V	m³/h 0	4,8	9,6	14,4	19,2	24,0	28,8	34,0
Single-phase	kW	1x230 V	kW	Α				N METRE				
10SVE01005	0,55	ESM90R/105 SVE	2 x 0,68	6,14	17,3	17,3	16,9	16,2	13,6	10,4	7,1	3,3
10SVE02007	0,75	ESM90R/107 SVE	2 x 0,92	8,18	24,2	23,9	23,1	21,7	19,3	14,6	9,7	3,6
10SVE02011	1,1	ESM90R/111 SVE	2 x 1,33	11,70	34,8	34,5	33,7	32,3	27,7	22,4	17,1	11,0
10SVE03015	1,5	ESM90R/115 SVE	2 x 1,78	15,62	52,7	52,2	51,0	46,1	38,1	30,8	23,5	15,1
	1	MOTOR	CN 402	0.057				0 051				
** PUMP		MOTOR	SMB2	*1	L/	1 10 0	200.0	Q = DEL		700.0	040.0	000 7
TYPE SVE	В	TVDE	* P 1		l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	966,7
	P _N kW	TYPE		208-240 V	m³/h 0 ມ	8,4 - TOTAI	16,8 HEAD I	25,2 N METRE	33,6	42,0	50,4 E WATER	58,0
Single-phase 15SVE01007	0,75	1x230 V ESM90R/107 SVE	kW	A 8,20	14,2	13,9		12,3	9,8	6,4		
155VE01011		ESM90R/111 SVE	2 x 0,92			20,1	13,3 19,4	12,5	9,8 14,8	10,9	2,8 7,0	2.2
	1,1	ESM90R/115 SVE	2 x 1,33	11,70	20,5		28,3	26,8	22,2	16,4		3,2 3,8
15SVE02015	1,5	L SIVISOIVITI S SVE	2 x 1,76	15,42	29,6	29,1	20,5	20,0	22,2	10,4	10,1	٥,ﺩ
** PUMP		MOTOR	SMRO	0 SET				Q = DEL	IVERV			
			JIVIDZ	*1	l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	1000,0
TYPE SVE	1				WITHIN O	140,0	200,0	420,0	0,000	,00,0	040,0	1000,0
SVE	D	TVDE	* D	200 240 14	m ³ /L 0	0 /	16.0	25.2	22 6	42.0	50 4	60 0
	P _N	TYPE	* P ₁	208-240 V	m³/h 0 н	8,4 – тота	16,8 HEAD I	25,2 N METRE	33,6 S OF CO	42,0	50,4 E WATER	60,0
Single-phase 22SVE01007	P _N kW 0,75	TYPE 1x230 V ESM90R/107 SVE	* P ₁ kW 2 x 0,89	208-240 V A 7,90		-	-	25,2 N METRE 12,5		-	-	

Table refers to hydraulic performances with two pumps running, max rpm, friction loss not included

ESM90R/111 SVE

ESM90R/115 SVE

11,0 g20_1-22sve-esm-2p50-en_a_th

11,5

16,7

7,8

3,2

2,8

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see see technical catalogue of single electric pump

1,1

1,5

22SVE01..011

22SVE02..015

11,74

15,12

2 x 1,34

2 x 1,72

20,7

31,4

20,5

30,3

18,7

26,7

15,1

21,7

20,8

31,0

a **xylem** brand

SMB20/..HME BOOSTER SETS SERIES SINGLE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	93,3
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,6
Single-phase	kW	1x230 V	kW	Α	H	I = TOTA	L HEAD II	N METRES	S OF COLL	JMN OF V	NATER	
1HME05S03	0,37	ESM80/103 HM	2 x 0,49	4,48	44,7	44,8	44,9	44,1	39,2	32,5	25,7	18,9
1HME08S05	0,55	ESM80/105 HM	2 x 0,69	6,14	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07	0,75	ESM80/107 HM	2 x 0,91	8,08	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11	1,1	ESM80/111 HM	2 x 1,33	11,70	134,0	134,4	134,6	132,3	119,5	99,5	79,6	59,6
1HME17S15	1,5	ESM80/115 HM	2 x 1,77	15,54	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,2

** PUMP		MOTOR	SMB	20 SET				Q = DEL	.IVERY			
TYPE				*1	l/min 0	26,7	53,3	80,0	106,7	133,3	160,0	173,3
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	1,6	3,2	4,8	6,4	8,0	9,6	10,4
Single-phase	kW	1x230 V	kW	Α	H	I = TOTA	l head in	N METRES	OF COLL	JMN OF \	NATER	
3HME03S03	0,37	ESM80/103 HM	2 x 0,49	4,48	33,3	33,9	33,4	31,5	25,6	20,1	14,6	11,8
3HME05S05	0,55	ESM80/105 HM	2 x 0,69	6,14	55,5	56,5	55,7	47,5	38,2	29,4	20,5	16,0
3HME07S07	0,75	ESM80/107 HM	2 x 0,91	8,12	77,6	79,1	78,1	64,9	52,0	39,8	27,5	21,3
3HME09S11	1,1	ESM80/111 HM	2 x 1,33	11,70	99,8	101,8	100,3	93,6	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/115 HM	2 x 1,78	15,60	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1

** PUMP		MOTOR	SMB	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	46,7	93,3	140,0	186,7	233,3	280,0	340,0
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	2,8	5,6	8,4	11,2	14,0	16,8	20,4
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	l head II		S OF COLI	JMN OF \	NATER	
5HME02S03	0,37	ESM80/103 HM	2 x 0,49	4,48	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05	0,55	ESM80/105 HM	2 x 0,69	6,14	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07	0,75	ESM80/107 HM	2 x 0,91	8,10	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11	1,1	ESM80/111 HM	2 x 1,33	11,70	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15	1,5	ESM80/115 HM	2 x 1,78	15,64	88,9	89,5	87,7	80,2	65,5	52,8	40,4	24,4

** PUMP		MOTOR	SMB	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	80,0	160,0	240,0	320,0	400,0	480,0	566,7
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	4,8	9,6	14,4	19,2	24,0	28,8	34,0
Single-phase	kW	1x230 V	kW	Α	H = TOTAL HEAD IN METRES OF COLUMN OF WATER							
10HME01S07	0,75	ESM80/107 HM	2 x 0,86	7,60	17,5	17,5	17,0	16,1	14,7	12,7	10,2	6,6
10HME02S11	1,1	ESM80/111 HM	2 x 1,33	11,70	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15	1,5	ESM80/115 HM	2 x 1,78	15,62	52,4	51,8	50,6	46,9	39,2	32,2	25,3	17,8

** PUMP		MOTOR	SMB	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	966,7
HMES, HMEN	P _N	TYPE	* P1	208-240 V	m3/h 0	8,4	16,8	25,2	33,6	42,0	50,4	58,0
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	l head in		OF COLL	JMN OF \	NATER	
15HME01S11M02	1,1	ESM80/111 HM	2 x 1,33	11,70	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2
15HME02S15M02	1,5	ESM80/115 HM	2 x 1,79	15,70	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1

Table refers to hydraulic performances with two pumps running, max rpm, friction loss not included * Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set g20_1-15hmes-esm-2p50-en_a_th

** For technical details see see technical catalogue of single electric pump

(LOWARA

a **xylem** brand

SMB30/..SVE BOOSTER SETS SERIES SINGLE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB3	0 SET				Q = DEI	IVERY			
TYPE				*1	l/min 0	20,0	40,0	60,0	80,0	100,0	120,0	140,0
SVE	P _N	TYPE	* P1	208-240 V	m³/h 0	1,2	2,4	3,6	4,8	6,0	7,2	8,4
Single-phase	kW	1x230 V	kW	А	H		L HEAD II	METRES	S OF COLI		WATER	I
1SVE05003	0,37	ESM90R/103 SVE	3 x 0,49	6,72	44,7	45,0	45,2	44,6	41,5	35,0	28,1	20,8
1SVE08005	0,55	ESM90R/105 SVE	3 x 0,68	9,21	71,5	72,0	72,3	71,2	62,3	52,0	41,2	29,6
1SVE11007	0,75	ESM90R/107 SVE	3 x 0,91	12,12	98,3	99,1	99,3	97,7	85,1	70,9	56,0	40,0
1SVE15011	1,1	ESM90R/111 SVE	3 x 1,33	17,55	134,1	135,1	135,5	133,8	123,6	103,9	83,3	61,4
** PUMP		MOTOR	CMD2	0.657				O = DEL				
TYPE		MOTOR	2IVIB2	80 SET * I	l/min 0	40.0	80,0	Q = DEI 120,0	160,0	200,0	240,0	260,0
SVE	P _N	ТҮРЕ	* P ₁	' 208-240 V	m ³ /h 0	2,4	4,8	7,2	9,6	12,0	14,4	15,6
Single-phase	kW	1x230 V	kW	208-240 V A		2,4 = TOTA					-	15,0
3SVE03003	0,37	ESM90R/103 SVE	3 x 0,49	6,72	33,4	33,7	33,6	30,7	24,9	19,5	14,0	10,9
33VE05005	0,57	ESM90R/105 SVE	3 x 0,49	9,24	55,7	56,2	55,8	46,3	37,1	28,4	19,5	14,4
33VE05005	0,75	ESM90R/107 SVE	3 x 0,09	12,18	77,9	78,7	77,2	63,4	50,7	38,6	26,0	18,7
35VE07007 35VE09011	1,1	ESM90R/111 SVE	3 x 1,33	17,55	100,2	101,0	100,5	88,8	72,5	56,4	39,9	31,2
33VE09011 3SVE11015	1,1	ESM90R/115 SVE	3 x 1,78	23,40	122,5	123,3	122,5	117,9	98,4	78,0	57,2	46,3
550211015	ر,۱		5,1,70	23,40	122,5	125,5	122,5	5,111	90,4	70,0	57,2	40,5
** PUMP		MOTOR	SMB3	0 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	500,0
SVE	P _N	TYPE	* P ₁	208-240 V	m³/h 0	4,2	8,4	12,6	16,8	21,0	25,2	30,0
Single-phase	kW	1x230 V	kW	Α	H	H = TOTA	l head ii	N METRES	S OF COLU	JMN OF \	WATER	
5SVE02003	0,37	ESM90R/103 SVE	3 x 0,49	6,72	22,4	22,2	21,8	20,0	16,5	13,3	10,2	6,5
5SVE03005	0,55	ESM90R/105 SVE	3 x 0,68	9,21	33,5	33,3	32,7	29,8	24,5	19,8	15,2	9,5
5SVE04007	0,75	ESM90R/107 SVE	3 x 0,91	12,15	44,7	44,4	43,5	40,5	33,4	27,1	20,8	13,3
5SVE06011	1,1	ESM90R/111 SVE	3 x 1,33	17,58	67,1	66,6	65,3	59,5	49,0	39,6	30,4	19,1
5SVE08015	1,5	ESM90R/115 SVE	3 x 1,78	23,43	88,8	89,3	87,6	82,6	68,3	55,3	42,6	27,9
** PUMP		MOTOR	SMP3	O SET				Q = DEI				
TYPE		WOTOK	COIVIC	*1	l/min 0	120,0	240,0	360,0	480,0	600,0	720,0	850,0
SVE	P _N	ТҮРЕ	* P1	ا 208-240 V	m ³ /h 0	7,2	14,4	21,6	28,8	36,0	43,2	51,0
Single-phase	κw	1x230 V	kW	208-240 V A		-, , 2 						51,0
10SVE01005	0,55	ESM90R/105 SVE	3 x 0,68	9,21	17,3	17,3	16,9	16,2	13,6	10,4	7,1	3,3
10SVE02007	0,75	ESM90R/107 SVE	3 x 0,92	12,27	24,2	23,9	23,1	21,7	19,3	14,6	9,7	3,6
105VE02011	1,1	ESM90R/111 SVE	3 x 1,33	17,55	34,8	34,5	33,7	32,3	27,7	22,4	17,1	11,0
10SVE03015	1,5	ESM90R/115 SVE	3 x 1,78	23,43	52,7	52,2	51,0	46,1	38,1	30,8	23,5	15,1
1057205015	5,1		5,1,70	23,43	52,7	52,2	51,0	40,1	50,1	50,0	23,5	15,1
** PUMP		MOTOR	SMB3	O SET				Q = DEI	IVERY			
TYPE				*1	l/min 0	210,0	420,0	630,0	840,0	1050,0	1260,0	1450,0
SVE	P _N	TYPE	* P ₁	208-240 V	m³/h 0	12,6	25,2	37,8	50,4	63,0	75,6	87,0
Single-phase	kW	1x230 V	kW	А		H = TOTA				JMN OF \		1
15SVE01007	0,75	ESM90R/107 SVE	3 x 0,92	12,30	14,2	13,9	13,3	12,3	9,8	6,4	2,8	
15SVE01011	1,1	ESM90R/111 SVE	3 x 1,33	17,55	20,5	20,1	19,4	18,4	14,8	10,9	7,0	3,2

** PUMP		MOTOR	SMB3	0 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	210,0	420,0	630,0	840,0	1050,0	1260,0	1500,0
SVE	P _N	TYPE	* P ₁	208-240 V	m³/h 0	12,6	25,2	37,8	50,4	63,0	75,6	90,0
Single-phase	kW	1x230 V	kW	Α	H = TOTAL HEAD IN METRES OF COLUMN OF WATER							
22SVE01007	0,75	ESM90R/107 SVE	3 x 0,89	11,85	14,4	14,4	14,1	12,5	9,5	6,3	2,9	
22SVE01011	1,1	ESM90R/111 SVE	3 x 1,34	17,61	20,7	20,8	20,5	18,7	15,1	11,5	7,8	3,2

23,13

29,6

29,1

28,3

26,8

22,2

16,4

Table refers to hydraulic performances with three pumps running, max rpm, friction loss not included

g30_1-22sve-esm-2p50-en_a_th

10,1

3,8

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

ESM90R/115 SVE

3 x 1,76

** For technical details see see technical catalogue of single electric pump

1,5

15SVE02..015

a **xylem** brand

SMB30/..HME BOOSTER SETS SERIES SINGLE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB	30 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	20,0	40,0	60,0	80,0	100,0	120,0	140,0
HMES, HMEN	P _N	TYPE	* P1	208-240 V	m³/h 0	1,2	2,4	3,6	4,8	6,0	7,2	8,4
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	l head ii	N METRES	OF COLL	JMN OF V	VATER	
1HME05S03	0,37	ESM80/103 HM	3 x 0,49	6,72	44,7	44,8	44,9	44,1	39,2	32,5	25,7	18,9
1HME08S05	0,55	ESM80/105 HM	3 x 0,69	9,21	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07	0,75	ESM80/107 HM	3 x 0,91	12,12	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11	1,1	ESM80/111 HM	3 x 1,33	17,55	134,0	134,4	134,6	132,3	119,5	99,5	79,6	59,6
1HME17S15	1,5	ESM80/115 HM	3 x 1,77	23,31	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,2

** PUMP		MOTOR	SMB	30 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	260,0
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	2,4	4,8	7,2	9,6	12,0	14,4	15,6
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	l head ii		OF COL		NATER	
3HME03S03	0,37	ESM80/103 HM	3 x 0,49	6,72	33,3	33,9	33,4	31,5	25,6	20,1	14,6	11,8
3HME05S05	0,55	ESM80/105 HM	3 x 0,69	9,21	55,5	56,5	55,7	47,5	38,2	29,4	20,5	16,0
3HME07S07	0,75	ESM80/107 HM	3 x 0,91	12,18	77,6	79,1	78,1	64,9	52,0	39,8	27,5	21,3
3HME09S11	1,1	ESM80/111 HM	3 x 1,33	17,55	99,8	101,8	100,3	93,6	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/115 HM	3 x 1,78	23,40	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1

** PUMP		MOTOR	SMB	30 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	510,0
HMES, HMEN	P _N	TYPE	* P ₁	208-240 V	m³/h 0	4,2	8,4	12,6	16,8	21,0	25,2	30,6
Single-phase	kW	1x230 V	kW	Α	F	I = TOTA	L HEAD II		OF COLL	JMN OF V	VATER	
5HME02S03	0,37	ESM80/103 HM	3 x 0,49	6,72	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05	0,55	ESM80/105 HM	3 x 0,69	9,21	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07	0,75	ESM80/107 HM	3 x 0,91	12,15	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11	1,1	ESM80/111 HM	3 x 1,33	17,55	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15	1,5	ESM80/115 HM	3 x 1,78	23,46	88,9	89,5	87,7	80,2	65,5	52,8	40,4	24,4

** PUMP		MOTOR SMB30 SET			Q = DELIVERY							
TYPE				*1	l/min 0	120,0	240,0	360,0	480,0	600,0	720,0	850,0
HMES, HMEN	P _N	P _N TYPE		208-240 V	m³/h 0	7,2	14,4	36,0	43,2	51,0		
Single-phase	kW	1x230 V	kW	Α	ł	I = TOTA	l head in	N METRES	OF COLL	JMN OF \	NATER	
10HME01S07	0,75	ESM80/107 HM	3 x 0,86	11,40	17,5	17,5	17,0	16,1	14,7	12,7	10,2	6,6
10HME02S11	1,1	ESM80/111 HM	3 x 1,33	17,55	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15	1,5	1,5 ESM80/115 HM		23,43	52,4	51,8	50,6	46,9	39,2	32,2	25,3	17,8

** PUMP		MOTOR		30 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	210,0	420,0	630,0	840,0	1050,0	1260,0	1450,0
HMES, HMEN	P _N	P _N TYPE		208-240 V	m3/h 0	12,6	25,2	37,8	50,4	63,0	75,6	87,0
Single-phase	kW	1x230 V	kW	Α	ł	I = TOTA	l head ii		OF COL		NATER	
15HME01S11M02	1,1	ESM80/111 HM	3 x 1,33	17,55	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2
15HME02S15M02	1,5	ESM80/115 HM	3 x 1,79	23,55	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1

Table refers to hydraulic performances with three pumps running, max rpm, friction loss not included

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

g30_1-15hmes-esm-2p50-en_a_th

** For technical details see see technical catalogue of single electric pump

a **xylem** brand

SMB10/..SVE BOOSTER SETS SERIES THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	e-SI	M SET	Q = DELIVERY							
TYPE				*1	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7
SVE	P _N	TYPE	* P ₁	380-460 V	m3/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
Three-phases	kW		kW	А	H =	TOTAL H	IEAD IN N	VETRES C	F COLUN	IN OF W	ATER	-
1SVE05003	0,37	ESM90R/303 SVE	1 x 0,49	1,45	44,7	45,0	45,2	44,6	41,5	34,9	28,0	20,8
1SVE08005	0,55	ESM90R/305 SVE	1 x 0,69	1,90	71,5	72,0	72,3	71,2	62,4	52,1	41,2	29,7
1SVE11007	0,75	ESM90R/307 SVE	1 x 0,91	2,40	98,3	99,1	99,3	97,7	85,0	70,9	56,0	40,1
1SVE15011	1,1	ESM90R/311 SVE	1 x 1,37	3,45	134,1	135,1	135,5	133,8	123,6	104,0	83,3	61,4
** PUMP		MOTOR	e-SI	VI SET			0	= DELIV	ERY			
ТҮРЕ				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	86,7
SVE	P _N	TYPE	* P1	380-460 V	m3/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,2
Three-phases	kW		kW	A		TOTAL H						-1-
3SVE03003	0,37	ESM90R/303 SVE	1 x 0,49	1,47	33,4	33,8	33,6	30,7	24,9	19,5	14,0	10,9
3SVE05005	0,55	ESM90R/305 SVE	1 x 0,7	1,92	55,7	56,2	, 55,8	46,3	, 37,1	28,4	19,4	. 14,4
3SVE07007	0,75	ESM90R/307 SVE	1 x 0,93	2,43	77,9	78,7	77,2	63,3	50,6	38,6	26,0	18,7
3SVE09011	1,1	ESM90R/311 SVE	1 x 1,37	3,45	100,2	101,0	100,5	88.8	72,5	56,4	39,9	31,2
3SVE11015	1,5 ESM90R/315 SVE		1 x 1,82	4,42	122,5	123,3	122,5	117,9	98,4	77,9	57,2	46,4
** PUMP		MOTOR	e-Sl	M SET				= DELIV	I			
TYPE				*1	l/min 0	23,3	46,7	70,0	93,3	116,7	140,0	166,7
SVE	P _N kW	TYPE	* P ₁ kW	380-460 V A	m3/h 0	1,4 TOTAL H	2,8	4,2	5,6	7,0	8,4	10,0
Three-phases 5SVE02003	0,37	ESM90R/303 SVE	1 x 0,5	1,48	22,4	22,2	21,8	20,0	16,5	13,3	10,2	6,5
55VE03005	0,55	ESM90R/305 SVE	1 x 0,69	1,92	33,5	33,3	32,7	29,8	24,5	19,8	15,2	9,5
55VE04007	0,75	ESM90R/307 SVE	1 x 0,92	2,42	44,7	44,4	43,5	40,5	33,4	27,0	20,8	13,3
55VE06011	1,1	ESM90R/311 SVE	1 x 1,38	3,46	67,1	66,6	65,3	59,5	49,0	39,6	30,3	19,1
55VE08015	1,5	ESM90R/315 SVE	1 x 1,83	4,43	88,8	89,2	87,6	82,7	68,4	55,3	42,7	28,0
		E2101201021220E	1 × 1,05	т,т	00,0	05,2	07,0	02,7	00,4	55,5	72,7	20,0
55VE12.022	2.2	ESM90R/322 SVE	1 x 2.55	5.88	133.2	133.7	131.6	121.6	100.4	81.0	62.2	40.3
5SVE12022	2,2	ESM90R/322 SVE	1 x 2,55	5,88	133,2	133,7	131,6	121,6	100,4	81,0	62,2	40,3
** PUMP	2,2	ESM90R/322 SVE		M SET			Q	= DELIV	'ERY	1	1	1
** PUMP TYPE		MOTOR	e-SI	M SET * I	l/min 0	40,0	Q 80,0	= DELIV 120,0	ERY 160,0	200,0	240,0	283,3
** PUMP TYPE SVE	P _N		e-SI * P ₁	M SET * I 380-460 V	l/min 0 m3/h 0	40,0 2,4	Q 80,0 4,8	= DELIV 120,0 7,2	ERY 160,0 9,6	200,0 12,0	240,0 14,4	1
** PUMP TYPE SVE Three-phases	P _N kW	MOTOR TYPE	e-SI * P ₁ kW	M SET * I 380-460 V A	l/min 0 m3/h 0 H =	40,0 2,4 TOTAL H	Q 80,0 4,8 IEAD IN N	= DELIV 120,0 7,2 METRES C	ERY 160,0 9,6 F COLUN	200,0 12,0 /N OF W	240,0 14,4 ATER	283,3 17,0
** PUMP TYPE SVE Three-phases 10SVE01005	P _N kW 0,55	MOTOR TYPE ESM90R/305 SVE	e-St * P1 kW 1 x 0,69	M SET * I 380-460 V A 1,90	//min 0 m3/h 0 H = 17,3	40,0 2,4 TOTAL H 17,3	Q 80,0 4,8 IEAD IN N 16,9	= DELIV 120,0 7,2 METRES C 16,2	ERY 160,0 9,6 DF COLUN 13,6	200,0 12,0 /N OF W 10,4	240,0 14,4 ATER 7,1	283,3 17,0 3,3
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007	P _N kW 0,55 0,75	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE	e-St * P₁ kW 1 x 0,69 1 x 0,94	* I 380-460 V <u>A</u> 1,90 2,46	Vmin 0 m3/h 0 H = 17,3 24,2	40,0 2,4 TOTAL H 17,3 23,9	Q 80,0 4,8 IEAD IN N 16,9 23,1	= DELIV 120,0 7,2 METRES C 16,2 21,7	ERY 160,0 9,6 0F COLUN 13,6 19,3	200,0 12,0 AN OF W 10,4 14,6	240,0 14,4 ATER 7,1 9,7	283,3 17,0 3,3 3,6
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011	P _N kW 0,55 0,75 1,1	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE	e-Si kW 1 x 0,69 1 x 0,94 1 x 1,37	* I 380-460 V A 1,90 2,46 3,45	/min 0 m3/h 0 H = 17,3 24,2 34,8	40,0 2,4 TOTAL H 17,3 23,9 34,5	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3	ERY 160,0 9,6 DF COLUN 13,6 19,3 27,7	200,0 12,0 /N OF W 10,4 14,6 22,4	240,0 14,4 ATER 7,1 9,7 17,1	283,3 17,0 3,3 3,6 11,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015	P _N kW 0,55 0,75 1,1 1,5	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	e-Sf kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83	* I 380-460 V A 1,90 2,46 3,45 4,43	Vmin 0 m3/h 0 H = 17,3 24,2 34,8 52,7	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2	Q 80,0 4,8 16,9 23,1 33,7 51,0	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8	240,0 14,4 ATER 7,1 9,7 17,1 23,5	283,3 17,0 3,3 3,6 11,0 15,1
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011	P _N kW 0,55 0,75 1,1	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54	* I 380-460 V A 1,90 2,46 3,45 4,43 5,86	/min 0 m3/h 0 H = 17,3 24,2 34,8	40,0 2,4 TOTAL H 17,3 23,9 34,5	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8	200,0 12,0 /N OF W 10,4 14,6 22,4	240,0 14,4 ATER 7,1 9,7 17,1	283,3 17,0 3,3 3,6 11,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP	P _N kW 0,55 0,75 1,1 1,5	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54	* I 380-460 V A 1,90 2,46 3,45 4,43 5,86 W SET	Vmin 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1 Q	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4	283,3 17,0 3,3 3,6 11,0 15,1 25,9
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE	P _N kW 0,55 0,75 1,1 1,5 2,2	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54 e-SI	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I	Vmin 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 Vmin 0	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1 Q 140,0	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5 350,0	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE	P _N kw 0,55 0,75 1,1 1,5 2,2 P _N	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	e-Si * P ₁ kw 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-Si * P ₁	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1 Q 140,0 8,4	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2	283,3 17,0 3,3 3,6 11,0 15,1 25,9
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases	P _N kw 0,55 0,75 1,1 1,5 2,2 P _N kw	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54 e-SI * P ₁ kW	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A	Vmin 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 Vmin 0 m3/h 0 H =	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1 Q 140,0 8,4 IEAD IN N	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 MN OF W	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE	e-Si * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,33 1 × 2,54 e-Si * P ₁ kW 1 × 0,92	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9	Q 80,0 4,8 EAD IN N 16,9 23,1 33,7 51,0 68,1 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 MN OF W 6,4	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases	P _N kw 0,55 0,75 1,1 1,5 2,2 P _N kw	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54 e-SI * P ₁ kW	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A	Vmin 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 Vmin 0 m3/h 0 H =	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H	Q 80,0 4,8 IEAD IN N 16,9 23,1 33,7 51,0 68,1 Q 140,0 8,4 IEAD IN N	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 MN OF W	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011	PN kW 0,55 0,75 1,1 1,5 2,2 PN kW 0,75 1,1 1,5 2,2	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/315 SVE	e-Si * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-Si * P ₁ kW 1 × 0,92 1 × 1,33	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 M3/h 0 H = 14,2 20,5	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1	Q 80,0 4,8 EAD IN N 16,9 23,1 33,7 51,0 68,1 0 68,1 140,0 8,4 EAD IN N 13,3 19,4	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 N OF W 6,4 10,9	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011 15SVE02015 15SVE02022	PN kW 0,55 0,75 1,1 1,5 2,2 PN kW 0,75 1,1 1,5 2,2 Image: Note that the second	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87	//min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1	Q 80,0 4,8 EAD IN N 16,9 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3 19,4 28,3 41,1	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8
** PUMP TYPE SVE 105VE01005 105VE01005 105VE02007 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015 155VE02022 ** PUMP	PN kW 0,55 0,75 1,1 1,5 2,2 PN kW 0,75 1,1 1,5 2,2 Image: Note that the second	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE ESM90R/311 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0	Q 80,0 4,8 EAD IN N 16,9 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3 19,4 28,3 41,1	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4 26,8	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5
** PUMP TYPE SVE 105VE01005 105VE02007 105VE02011 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015 155VE02022 ** PUMP TYPE	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/322 SVE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54 e-SI kW 1 x 0,92 1 x 1,33 1 x 1,76 1 x 2,54 e-SI e-SI	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0	Q 80,0 4,8 16,9 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3 19,4 28,3 41,1 Q 140,0	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV 210,0	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4 26,8 350,0	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 420,0	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5
** PUMP TYPE SVE 105VE01005 105VE02007 105VE02011 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015 155VE02022 ** PUMP TYPE SVE	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2 P _N	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54 e-SI * P ₁	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I 380-460 V	//min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 //min 0 m3/h 0	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0 4,2 70,0 42,0	Q 80,0 4,8 EAD IN N 16,9 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3 19,4 28,3 41,1 Q 140,0 8,4	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV 210,0 12,6	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4 26,8 350,0 21,0	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 420,0 25,2	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5
** PUMP TYPE SVE 105VE01005 105VE02007 105VE02011 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01011 155VE02015 155VE02022 ** PUMP TYPE SVE Three-phases	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE	e-SI * P ₁ kW 1 x 0,69 1 x 0,94 1 x 1,37 1 x 1,83 1 x 2,54 e-SI * P ₁ kW 1 x 0,92 1 x 1,33 1 x 1,76 1 x 2,54 e-SI * P ₁ kW	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I 380-460 V A	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H =	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0 4,2 TOTAL H	Q 80,0 4,8 16,9 23,1 33,7 51,0 68,1 140,0 8,4 EAD IN N 13,3 19,4 28,3 41,1 Q 140,0 8,4 EAD IN N	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV 210,0 12,6 METRES C	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 57,8 16,8 57,8 16,8	200,0 12,0 IN OF W 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4 26,8 350,0 21,0 IN OF W IN OF W	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 420,0 25,2 ATER	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5 500,0 30,0
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE02015 15SVE02015 15SVE02022 ** PUMP TYPE SVE Three-phases 22SVE01007	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2 P _N kW 0,75 0	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54 e-SI * P ₁ kW 1 × 0,91	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I 380-460 V A 2,38	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H = 14,4	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0 4,2 TOTAL H 14,4	Q 80,0 4,8 16,9 23,1 33,7 51,0 68,1 140,0 8,4 140,0 8,4 13,3 19,4 28,3 41,1 Q 140,0 8,4 14,1	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV 210,0 12,6 METRES C 12,5	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,5	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 4N OF W 6,4 10,9 16,4 26,8 350,0 21,0 4N OF W 6,3	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 420,0 25,2 ATER 2,9	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5 500,0 30,0 0,0
** PUMP TYPE SVE 10SVE01005 10SVE02007 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE02015 15SVE02022 ** PUMP TYPE SVE Three-phases 22SVE01007 22SVE01011	Pn kW 0,55 0,75 1,1 1,5 2,2 Pn kw 0,75 1,1 1,5 2,2 Pn	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/315 SVE ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/315 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I 380-460 V A 2,38 3,47	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H = 14,4 20,7	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0 4,2 TOTAL H 14,4 20,8	Q 80,0 4,8 16,9 23,1 33,7 51,0 68,1 140,0 8,4 140,0 8,4 13,3 19,4 28,3 41,1 Q 140,0 8,4 141,0 20,5	 DELIV 120,0 7,2 46,1 65,8 DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 DELIV 210,0 12,6 METRES C 12,5 18,7 	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,5 15,1	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 IN OF W 6,4 10,9 16,4 26,8 350,0 21,0 IN OF W 6,3 11,5	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 20,1 420,0 25,2 ATER 2,9 7,8	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5 500,0 30,0 0,0 3,2
** PUMP TYPE SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE02015 15SVE02015 15SVE02022 ** PUMP TYPE SVE Three-phases 22SVE01007	P _N kW 0,55 0,75 1,1 1,5 2,2 P _N kW 0,75 1,1 1,5 2,2 P _N kW 0,75 0	MOTOR TYPE ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	e-SI * P ₁ kW 1 × 0,69 1 × 0,94 1 × 1,37 1 × 1,83 1 × 2,54 e-SI * P ₁ kW 1 × 0,92 1 × 1,33 1 × 1,76 1 × 2,54 e-SI * P ₁ kW 1 × 0,91	M SET * I 380-460 V A 1,90 2,46 3,45 4,43 5,86 M SET * I 380-460 V A 2,48 3,45 4,34 5,87 M SET * I 380-460 V A 2,38	/min 0 m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H = 14,4	40,0 2,4 TOTAL H 17,3 23,9 34,5 52,2 69,7 70,0 4,2 TOTAL H 13,9 20,1 29,1 42,0 70,0 4,2 TOTAL H 14,4	Q 80,0 4,8 16,9 23,1 33,7 51,0 68,1 140,0 8,4 140,0 8,4 13,3 19,4 28,3 41,1 Q 140,0 8,4 14,1	= DELIV 120,0 7,2 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 210,0 12,6 METRES C 12,3 18,4 26,8 39,7 = DELIV 210,0 12,6 METRES C 12,5	ERY 160,0 9,6 F COLUN 13,6 19,3 27,7 38,1 57,8 ERY 280,0 16,8 F COLUN 9,8 14,8 22,2 33,4 ERY 280,0 16,8 F COLUN 9,5	200,0 12,0 10,4 14,6 22,4 30,8 47,5 350,0 21,0 4N OF W 6,4 10,9 16,4 26,8 350,0 21,0 4N OF W 6,3	240,0 14,4 ATER 7,1 9,7 17,1 23,5 37,4 420,0 25,2 ATER 2,8 7,0 10,1 20,1 420,0 25,2 ATER 2,9	283,3 17,0 3,3 3,6 11,0 15,1 25,9 483,3 29,0 0,0 3,2 3,8 13,5 500,0 30,0 0,0

Table refers to hydraulic performances with one pump running, max rpm, friction loss not included

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see see technical catalogue of single electric pump

g10_1-22sve-esmT-2p50-en_a_th

(LOWARA

a **xylem** brand

SMB10/..HME BOOSTER SETS SERIES THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	e-SN	1 SET	Q = DELIVERY								
TYPE				*1	l/min 0	6,7	13,3	20,0	26,7	33,3	40,0	46,7	
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	0,4	0,8	1,2	1,6	2,0	2,4	2,8	
Three-phases	kW		kW	Α	H	I = TOTA	l head ii		OF COLL	JMN OF V	VATER		
1HME05S03	0,55	ESM80/305 HM	1 x 0,49	1,46	44,7	44,8	44,9	44,1	39,2	32,5	25,7	19,0	
1HME08S05	0,55	ESM80/305 HM	1 x 0,69	1,90	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0	
1HME11S07	0,75	ESM80/307 HM	1 x 0,91	2,41	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6	
1HME15S11	1,1	ESM80/311 HM	1 x 1,37	3,45	134,0	134,4	134,6	132,3	119,5	99,6	79,6	59,6	
1HME17S15	1,5	ESM80/315 HM	1 x 1,81	4,39	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,1	

** PUMP		MOTOR	e-SN	1 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	86,7
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,2
Three-phases	kW		kW	Α	F	I = TOTA	L HEAD II		OF COLL	JMN OF V	VATER	
3HME03S03	0,37	ESM80/303 HM	1 x 0,49	1,47	33,3	33,9	33,4	31,5	25,6	20,1	14,5	11,8
3HME05S05	0,55	ESM80/305 HM	1 x 0,7	1,92	55,5	56,5	55,7	47,5	38,2	29,4	20,4	16,0
3HME07S07	0,75	ESM80/307 HM	1 x 0,92	2,43	77,6	79,1	78,1	64,9	52,1	39,8	27,5	21,3
3HME09S11	1,1	ESM80/311 HM	1 x 1,37	3,45	99,8	101,8	100,3	93,7	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/315 HM	1 x 1,82	4,42	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1
3HME14S22	2,2	ESM80/322 HM	1 x 2,53	5,84	155,4	158,3	156,1	149,5	139,0	121,7	93,9	79,8

** PUMP		MOTOR	e-SN	1 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	23,3	46,7	70,0	93,3	116,7	140,0	170,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	1,4	2,8	4,2	5,6	7,0	8,4	10,2
Three-phases	kW		kW	Α	H	H = TOTA	l head II		OF COLL	JMN OF V	VATER	
5HME02S03	0,37	ESM80/303 HM	1 x 0,5	1,48	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05	0,55	ESM80/305 HM	1 x 0,7	1,92	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07	0,75	ESM80/307 HM	1 x 0,92	2,42	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11	1,1	ESM80/311 HM	1 x 1,38	3,46	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15	1,5	ESM80/315 HM	1 x 1,83	4,44	88,9	89,5	87,7	80,2	65,5	52,8	40,5	24,4
5HME10S22	2,2	ESM80/322 HM	1 x 2,54	5,87	111,1	111,8	109,5	105,3	95,0	77,9	61,6	40,4

** PUMP		MOTOR	e-SN	1 SET	Q = DELIVERY								
TYPE				*1	l/min 0	l/min 0 40,0 80,0			160,0	200,0	240,0	283,3	
HMES, HMEN	PN	TYPE	* P1	380-460 V	4,8	7,2	9,6	12,0	14,4	17,0			
Three-phases	kW		TYPE * P1 380-460 V m3/h 0 2,4 4,8 7,2 9,6 12,0 14,4 17 kW A H = TOTAL HEAD IN METRES OF COLUMN OF WATER										
10HME01S07	0,75	ESM80/307 HM	1 x 0,84	2,24	17,5	17,4	16,9	16,1	14,7	12,7	10,2	6,7	
10HME02S11	1,1	ESM80/311 HM	1 x 1,37	3,45	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1	
10HME03S15	1,5	ESM80/315 HM	4,43	52,4	51,8	50,6	47,0	39,2	32,2	25,3	17,8		
10HME04S22	2,2 ESM80/322 HM 1 x 2,54 5,87				69,8	69,1	67,3	65,1	56,9	47,3	37,8	27,5	

** PUMP		MOTOR	e-SM SET			Q = DELIVERY								
TYPE				*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	483,3		
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	4,2	8,4	12,6	16,8	21,0	25,2	29,0		
Three-phases	kW		kW	Α	F	I = TOTA	l head in	N METRES	OF COLL	JMN OF V	VATER			
15HME01S11	1,1	ESM80/311 HM	1 x 0,84	3,45	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2		
15HME02S15	1,5	ESM80/315 HM	1 x 1,85	4,47	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1		
15HME03S22	2,2	ESM80/322 HM	1 x 2,5	5,80	64,0	64,1	50,5	40,6	31,9	23,4	15,4	10,0		

Table refers to hydraulic performances with one pump running, max rpm, friction loss not included

g10_1-15hmes-esmT-2p50-en_a_th

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set ** For technical details see technical catalogue of single electric pump

ELECTRIC PUMP THREE-PHASE TABLE OF ELECTRIC MOTOR DATA

In the range 3000-3600 rpm the nominal motor power is guaranteed. Above 3600 rpm it isn't possible work and the motor is automatically limited; below 3000 rpm it works partially load.

e-SVE

		*ш	ction	SPEED	INPUT CURRENT	0	DATA REL	ATED TO	THE VO	LTAGE C	F 400V	
P _N	MOTOR TYPE	C SIZE*		(RPM)**	I (A)	In	COSφ	Tn		η %		IES
kW		IEC	Constru Design	min⁻¹	208-240/380-460 V	Α		Nm	4/4	3/4	2/4	
0,37	ESM90R/303 SVE	90R		3000	2,01-1,85/1,41-1,28	1,42	0,48	1,18	78,6	75,6	70,1	2
0,57	L3101901030330L	JOK		3600	2,13-1,83/1,43-1,33	1,36	0,40	0,98	83,1	80,7	76,1	2
0,55	ESM90R/305 SVE	90R		3000	2,81-2,57/1,89-1,69	1,88	0,52	1,75	81,1	79,3	75,5	2
0,55		901		3600	2,90-2,52/1,90-1,73	1,80	0,52	1,46	85,4	83,8	80,6	2
0,75	ESM90R/307 SVE	90R	4	3000	3,70-3,37/2,44-2,17	2,41	0,55	2,39	81,9	81,2	78,6	2
0,75		JOK	B1	3600	3,74-3,28/2,43-2,20	2,31	0,55	1,99	86,1	85,5	83,1	2
1,10	ESM90R/311 SVE	90R	V18/B	3000	5,12-4,73/3,41-3,01	3,35	0,57	3,50	82,8	81,3	77,7	2
1,10	ESIVISOR/STT SVE	906	>	3600	5,15-4,69/3,45-3,06	3,32	0,57	2,92	83,5	81,6	77,6	2
1,50	ESM90R/315 SVE	90R		3000	6,73-6,17/4,49-3,95	4,39	0,59	4,77	83,1	82,8	80,6	2
1,50	ESIVI9UR/SISSVE	90K		3600	6,69-6,08/4,48-3,97	4,32	0,59	3,98	84,6	83,6	80,8	2
2,20	ESM90R/322 SVE	90R		3000	- /6,03-5,32	5,81	0,62	7,00	87,6	87,4	85,9	2
2,20	ESIVISON SZZ SVE	SOK		3600	- /5,93-5,24	5,74	0,02	5,84	88,9	88,2	86,3	2
* R = Reduced size of motor casing as compared to shaft extension and flange. eSv_Smart-mott_en_a_t										_en_a_te		

** The indicated rotational speed are representing the upper and lower limits of the rated power operational speed range.

e-HME

		Έ	tion 1	SPEED	INPUT CURRENT	D	OATA REL	ATED TO	THE VO	LTAGE O	F 400 V	
P _N	MOTOR TYPE	c size	Construction Design	(RPM) *	I (A)	In	cosφ	Tn		η%		IES
kW		IEC	Con	min ⁻¹	208-240/380-460 V	Α		Nm	4/4	3/4	2/4	
0,37	ESM80/303 HM	80		3000	2,01-1,85/1,41-1,28	1,42	0,48	1,18	78,6	75,6	70,1	2
0,57	L310100/303 T1101	80		3600	2,13-1,83/1,43-1,33	1,36	0,40	0,98	83,1	80,7	76,1	2
0,55	ESM80/305 HM	80		3000	2,81-2,57/1,89-1,69	1,88	0,52	1,75	81,1	79,3	75,5	2
0,55	E31V100/303 F11VI	80		3600	2,90-2,52/1,90-1,73	1,80	0,52	1,46	85,4	83,8	80,6	2
0,75	ESM80/307 HM	80		3000	3,70-3,37/2,44-2,17	2,41	0,55	2,39	81,9	81,2	78,6	2
0,75	E31V100/307 F11VI	80	CIAL	3600	3,74-3,28/2,43-2,20	2,31	0,55	1,99	86,1	85,5	83,1	2
1,10	ESM80/311 HM	80	SPE(3000	5,12-4,73/3,41-3,01	3,35	0,57	3,50	82,8	81,3	77,7	2
1,10		80	S	3600	5,15-4,69/3,45-3,06	3,32	0,57	2,92	83,5	81,6	77,6	2
1,50	ESM80/315 HM	80		3000	6,73-6,17/4,49-3,95	4,39	0,59	4,77	83,1	82,8	80,6	2
1,50		80		3600	6,69-6,08/4,48-3,97	4,32	0,59	3,98	84,6	83,6	80,8	2
2,20	ESM80/322 HM	80		3000	- /6,03-5,32	5,81	0,62	7,00	87,6	87,4	85,9	2
2,20	ESIVIOU/SZZ HIVI	00		3600	- /5,93-5,24	5,74	0,62	5,84	88,9	88,2	86,3	Z

* The indicated rotational speed are representing the upper and lower limits of the rated power operational speed range.

eHM-eVM_Smart-mott-en_a_te

a xylem brand

a **xylem** brand

SMB20/..SVE BOOSTER SETS SERIES THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB	20 SET			Q	= DELIV	'ERY			
TYPE				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	93,3
SVE	P _N	TYPE	* P1	380-460 V	m3/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,6
Three-phases	kW		kW	Α	H =		iead in N	AETRES C	F COLUN	AN OF W	ATER	1
1SVE05003	0,37	ESM90R/303 SVE	2 x 0,49	2,90	44,7	45,0	45,2	44,6	41,5	34,9	28,0	20,8
1SVE08005	0,55	ESM90R/305 SVE	2 x 0,69	3,80	71,5	72,0	72,3	71,2	62,4	52,1	41,2	29,7
1SVE11007	0,75	ESM90R/307 SVE	2 x 0,91	4,80	98,3	99,1	99,3	97,7	85,0	70,9	56,0	40,1
1SVE15011	1,1	ESM90R/311 SVE	2 x 1,37	6,90	134,1	135,1	135,5	133,8	123,6	104,0	83,3	61,4
** PUMP		MOTOR	SMB	20 SET			0	= DELIV	'ERY			
TYPE		moren	51115	*1	l/min 0	26.7	53.3	80.0	106.7	133.3	160.0	173.3
SVE	P _N	TYPE	* P1	380-460 V	m3/h 0	1.6	3.2	4.8	6.4	8.0	9.6	10.4
Three-phases	kW		kW.	A	H =	TOTAL H	IEAD IN N	/ETRES C		/N OF W	ATER	1 .
3SVE03003	0,37	ESM90R/303 SVE	2 x 0,49	2,94	33,4	33,8	33,6	30,7	24,9	19,5	14,0	10,9
3SVE05005	0,55	ESM90R/305 SVE	2 x 0,7	3,84	55,7	56,2	55,8	46,3	37,1	28,4	19,4	14,4
3SVE07007	0,75	ESM90R/307 SVE	2 x 0,93	4,86	77,9	78,7	77,2	63,3	50,6	38,6	26,0	18,7
3SVE09011	1,1	ESM90R/311 SVE	2 x 1,37	6,90	100,2	101,0	100,5	88,8	72,5	56,4	39,9	31,2
3SVE11015	1,5	ESM90R/315 SVE	2 x 1,82	8,84	122,5	123,3	122,5	117,9	98,4	77,9	57,2	46,4
** PUMP		MOTOR	SMB	20 SET		1		= DELIV	1	I	1	1
TYPE				*1	l/min 0	46,7	93,3	140,0	186,7	233,3	280,0	333,3
SVE	PN	TYPE	* P ₁	380-460 V	m3/h 0	2,8	5,6	8,4	11,2	14,0	16,8	20,0
Three-phases 5SVE02003	kW 0,37	ESM90R/303 SVE	kW 2 x 0,5	A 2,96	н = 22,4	= TOTAL H 22.2	21,8	20,0	16.5	13,3	10,2	6,5
55VE03005	0.55	ESM90R/305 SVE	2 x 0,69	3.84	33.5	33.3	32.7	29,8	24.5	19.8	15.2	9.5
55VE04007	0,75	ESM90R/307 SVE	2 x 0,03	4,84	44.7	44,4	43,5	40.5	33.4	27,0	20.8	13,3
55VE06011	1,1	ESM90R/311 SVE	2 x 0,32 2 x 1,38	6,92	67,1	66,6	65,3	59,5	49,0	39,6	30,3	19,1
5SVE08015	1,5	ESM90R/315 SVE	2 x 1,83	8,86	88,8	89.2	87,6	82.7	68,4	55,3	42,7	28,0
55VE00015	2,2	ESM90R/322 SVE	2 x 1,05	11,76	133,2	133,7	131,6	121,6	100,4	81.0	62,2	40,3
557212022	2,2		2 × 2,55	11,70	155,2	155,7	151,0	121,0	100,4	01,0	02,2	40,5
** PUMP		MOTOR	SMB	20 SET			Q	= DELIV	'ERY		1	
TYPE				*1	l/min 0	80,0	160,0	240,0	320,0	400,0	480,0	566,7
SVE	P _N	TYPE	* P ₁	380-460 V	m3/h 0	4,8	9,6	14,4	19,2	24,0	28,8	34,0
			kW	Α	H =	TOTAL H			PF COLUN	IN OF W	ATER	1
Three-phases	kW			2.00	170				120	10 4	7 4	
10SVE01005	0,55	ESM90R/305 SVE	2 x 0,69	3,80	17,3	17,3	16,9	16,2	13,6	10,4	7,1	3,3
10SVE01005 10SVE02007	0,55 0,75	ESM90R/307 SVE	2 x 0,69 2 x 0,94	4,92	24,2	23,9	23,1	21,7	19,3	14,6	9,7	3,6
10SVE01005 10SVE02007 10SVE02011	0,55 0,75 1,1	ESM90R/307 SVE ESM90R/311 SVE	2 x 0,69 2 x 0,94 2 x 1,37	4,92 6,90	24,2 34,8	23,9 34,5	23,1 33,7	21,7 32,3	19,3 27,7	14,6 22,4	9,7 17,1	3,6 11,0
10SVE01005 10SVE02007	0,55 0,75	ESM90R/307 SVE	2 x 0,69 2 x 0,94	4,92	24,2	23,9	23,1	21,7	19,3	14,6	9,7	3,6

** PUMP		MOTOR	SMB	20 SET			Q	= Deliv	ERY			
TYPE				*1	l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	966,7
SVE	P _N	TYPE	* P1	380-460 V	m3/h 0	8,4	16,8	25,2	33,6	42,0	50,4	58,0
Three-phases	kW		kW	Α	H =	TOTAL H	EAD IN N	JETRES C	F COLUN	IN OF W	ATER	I
15SVE01007	0,75	ESM90R/307 SVE	2 x 0,92	4,96	14,2	13,9	13,3	12,3	9,8	6,4	2,8	0,0
15SVE01011	1,1	ESM90R/311 SVE	2 x 1,33	6,90	20,5	20,1	19,4	18,4	14,8	10,9	7,0	3,2
15SVE02015	1,5	ESM90R/315 SVE	2 x 1,76	8,68	29,6	29,1	28,3	26,8	22,2	16,4	10,1	3,8
15SVE02022	2,2	ESM90R/322 SVE	2 x 2,54	11,74	42,7	42,0	41,1	39,7	33,4	26,8	20,1	13,5

** PUMP		MOTOR	SMB	20 SET			Q	= Deliv	ery			
TYPE				*1	l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	1000,0
SVE	P _N	TYPE	* P1	380-460 V	m3/h 0	8,4	16,8	25,2	33,6	42,0	50,4	60,0
Three-phases	kW		kW	А	H =	TOTAL H	EAD IN N	NETRES C	F COLUN	IN OF W	ATER	
22SVE01007	0,75	ESM90R/307 SVE	2 x 0,91	4,76	14,4	14,4	14,1	12,5	9,5	6,3	2,9	0,0
22SVE01011	1,1	ESM90R/311 SVE	2 x 1,38	6,94	20,7	20,8	20,5	18,7	15,1	11,5	7,8	3,2
22SVE02015	1,5	ESM90R/315 SVE	2 x 1,76	8,62	31,4	31,0	30,3	26,7	21,7	16,7	11,0	2,8
22SVE02022	2,2	ESM90R/322 SVE	2 x 2,56	11,82	45,2	44,7	44,0	39,3	33,0	27,3	21,4	13,6

Table refers to hydraulic performances with two pumps running, max rpm, friction loss not included

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

 $\space{1.5}$ ** For technical details see see technical catalogue of single electric pump

g20_1-22sve-esmT-2p50-en_a_th

a **xylem** brand

SMB20/..HME BOOSTER SETS SERIES THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB2	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	13,3	26,7	40,0	53,3	66,7	80,0	93,3
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	0,8	1,6	2,4	3,2	4,0	4,8	5,6
Three-phases	kW		kW	Α	H	I = TOTA	l head ii		OF COLL	JMN OF V	VATER	
1HME05S03	0,55	ESM80/305 HM	2 x 0,49	2,92	44,7	44,8	44,9	44,1	39,2	32,5	25,7	19,0
1HME08S05	0,55	ESM80/305 HM	2 x 0,69	3,80	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07	0,75	ESM80/307 HM	2 x 0,91	4,82	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11	1,1	ESM80/311 HM	2 x 1,37	6,90	134,0	134,4	134,6	132,3	119,5	99,6	79,6	59,6
1HME17S15	1,5	ESM80/315 HM	2 x 1,81	8,78	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,1

** PUMP		MOTOR	SMB2	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	26,7	53,3	80,0	106,7	133,3	160,0	173,3
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	1,6	3,2	4,8	6,4	8,0	9,6	10,4
Three-phases	kW		kW	Α	F	I = TOTA	L HEAD II		OF COLL	JMN OF V	VATER	
3HME03S03	0,37	ESM80/303 HM	2 x 0,49	2,94	33,3	33,9	33,4	31,5	25,6	20,1	14,5	11,8
3HME05S05	0,55	ESM80/305 HM	2 x 0,7	3,84	55,5	56,5	55,7	47,5	38,2	29,4	20,4	16,0
3HME07S07	0,75	ESM80/307 HM	2 x 0,92	4,86	77,6	79,1	78,1	64,9	52,1	39,8	27,5	21,3
3HME09S11	1,1	ESM80/311 HM	2 x 1,37	6,90	99,8	101,8	100,3	93,7	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/315 HM	2 x 1,82	8,84	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1
3HME14S22	2,2	ESM80/322 HM	2 x 2,53	11,68	155,4	158,3	156,1	149,5	139,0	121,7	93,9	79,8

** PUMP		MOTOR	SMB2	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	46,7	93,3	140,0	186,7	233,3	280,0	340,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	2,8	5,6	8,4	11,2	14,0	16,8	20,4
Three-phases	kW		kW	Α	H	I = TOTA	l head II		OF COLL	JMN OF V	VATER	
5HME02S03	0,37	ESM80/303 HM	2 x 0,5	2,96	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05	0,55	ESM80/305 HM	2 x 0,7	3,84	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07	0,75	ESM80/307 HM	2 x 0,92	4,84	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11	1,1	ESM80/311 HM	2 x 1,38	6,92	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15	1,5	ESM80/315 HM	2 x 1,83	8,88	88,9	89,5	87,7	80,2	65,5	52,8	40,5	24,4
5HME10S22	2,2	ESM80/322 HM	2 x 2,54	11,74	111,1	111,8	109,5	105,3	95,0	77,9	61,6	40,4

** PUMP		MOTOR	SMB2	0 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	80,0	160,0	240,0	320,0	400,0	480,0	566,7
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	4,8	9,6	14,4	19,2	24,0	28,8	34,0
Three-phases	kW		kW	Α	F	I = TOTA	L HEAD II	N METRES	OF COLL	JMN OF V	VATER	
10HME01S07	0,75	ESM80/307 HM	2 x 0,84	4,48	17,5	17,4	16,9	16,1	14,7	12,7	10,2	6,7
10HME02S11	1,1	ESM80/311 HM	2 x 1,37	6,90	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15	1,5	ESM80/315 HM	2 x 1,83	8,86	52,4	51,8	50,6	47,0	39,2	32,2	25,3	17,8
10HME04S22	2,2	ESM80/322 HM	2 x 2,54	11,74	69,8	69,1	67,3	65,1	56,9	47,3	37,8	27,5

** PUMP		MOTOR	SMB2	20 SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	140,0	280,0	420,0	560,0	700,0	840,0	966,7
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	8,4	16,8	25,2	33,6	42,0	50,4	58,0
Three-phases	kW		kW	Α	H = TOTAL HEAD IN METRES OF COLUMN OF WATER							
15HME01S11	1,1	ESM80/311 HM	2 x 0,84	6,90	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2
15HME02S15	1,5	ESM80/315 HM	2 x 1,85	8,94	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1
15HME03S22	2,2	ESM80/322 HM	2 x 2,5	11,60	64,0	64,1	50,5	40,6	31,9	23,4	15,4	10,0

Table refers to hydraulic performances with two pumps running, max rpm, friction loss not included

g20_1-15hmes-esmT-2p50-en_a_th

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set ** For technical details see technical catalogue of single electric pump

a **xylem** brand

SMB30/..SVE BOOSTER SETS SERIES THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE

** PUMP		MOTOR	SMB	30 SET			Q	= DELIV	'ERY			
TYPE				*1	l/min 0	20,0	40,0	60,0	80,0	100,0	120,0	140,0
SVE	P _N	TYPE	* P ₁	380-460 V	m3/h 0	1,2	2,4	3,6	4,8	6,0	7,2	8,4
Three-phases	kW		kW	А	H =	TOTAL H	IEAD IN N	METRES C	F COLUN	IN OF W	ATER	
1SVE05003	0,37	ESM90R/303 SVE	3 x 0,49	4,35	44,7	45,0	45,2	44,6	41,5	34,9	28,0	20,8
1SVE08005	0,55	ESM90R/305 SVE	3 x 0,69	5,70	71,5	72,0	72,3	71,2	62,4	52,1	41,2	29,7
1SVE11007	0,75	ESM90R/307 SVE	3 x 0,91	7,20	98,3	99,1	99,3	97,7	85,0	70,9	56,0	40,1
1SVE15011	1,1	ESM90R/311 SVE	3 x 1,37	10,35	134,1	135,1	135,5	133,8	123,6	104,0	83,3	61,4
** PUMP		MOTOR	SMB	30 SET		1	Q	= DELIV	'ERY	П	1	
TYPE				*1	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	260,0
SVE	P _N	TYPE	* P ₁	380-460 V	m3/h 0	2,4	4,8	7,2	9,6	12,0	14,4	15,6
Three-phases	kW		kW	A	H =	TOTAL H	iead in M	METRES C	of Colun	/IN OF W	ATER	
3SVE03003	0,37	ESM90R/303 SVE	3 x 0,49	4,41	33,4	33,8	33,6	30,7	24,9	19,5	14,0	10,9
3SVE05005	0,55	ESM90R/305 SVE	3 x 0,7	5,76	55,7	56,2	55,8	46,3	37,1	28,4	19,4	14,4
3SVE07007	0,75	ESM90R/307 SVE	3 x 0,93	7,29	77,9	78,7	77,2	63,3	50,6	38,6	26,0	18,7
3SVE09011	1,1	ESM90R/311 SVE	3 x 1,37	10,35	100,2	101,0	100,5	88,8	72,5	56,4	39,9	31,2
3SVE11015	1,5	ESM90R/315 SVE	3 x 1,82	13,26	122,5	123,3	122,5	117,9	98,4	77,9	57,2	46,4
** PUMP		MOTOR	SMB	30 SET			Q	= DELIV	'ERY			
TYPE				*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	500,0
SVE	P _N	TYPE	* P ₁	380-460 V	m3/h 0	4,2	8,4	12,6	16,8	21,0	25,2	30,0
Three-phases	kW		kW	A	H =	TOTAL H	EAD IN N	METRES C	OF COLUN	IN OF W	ATER	
5SVE02003	0,37	ESM90R/303 SVE	3 x 0,5	4,44	22,4	22,2	21,8	20,0	16,5	13,3	10,2	6,5
5SVE03005	0,55	ESM90R/305 SVE	3 x 0,69	5,76	33,5	33,3	32,7	29,8	24,5	19,8	15,2	9,5
5SVE04007	0,75	ESM90R/307 SVE	3 x 0,92	7,26	44,7	44,4	43,5	40,5	33,4	27,0	20,8	13,3
5SVE06011	1,1	ESM90R/311 SVE	3 x 1,38	10,38	67,1	66,6	65,3	59,5	49,0	39,6	30,3	19,1
5SVE08015	1,5	ESM90R/315 SVE	3 x 1,83	13,29	88,8	89,2	87,6	82,7	68,4	55,3	42,7	28,0
5SVE12022	2,2	ESM90R/322 SVE	3 x 2,55	17,64	133,2	133,7	131,6	121,6	100,4	81,0	62,2	40,3
** PUMP		MOTOR	SMB	30 SET			Q	= DELIV	'ERY			
TYPE				*1	l/min 0	120,0	240,0	360,0	480,0	600,0	720,0	850,0
TYPE SVE	P _N	TYPE	* P ₁	* I 380-460 V	l/min 0 m3/h 0	120,0 7,2	240,0 14,4	360,0 21,6	480,0 28,8	600,0 36,0	720,0 43,2	850,0 51,0
SVE Three-phases	kW		* P ₁ kW		m3/h 0	7,2	14,4	21,6	28,8		43,2	-
SVE Three-phases 10SVE01005	kW 0,55	TYPE ESM90R/305 SVE	•	380-460 V A 5,70	m3/h 0 H = 17,3	7,2 TOTAL H 17,3	14,4 IEAD IN N 16,9	21,6 METRES C 16,2	28,8 DF COLUN 13,6	36,0 /N OF W 10,4	43,2 ATER 7,1	51,0 3,3
SVE Three-phases 10SVE01005 10SVE02007	kw 0,55 0,75	ESM90R/305 SVE ESM90R/307 SVE	kW 3 x 0,69 3 x 0,94	380-460 V A 5,70 7,38	m3/h 0 H = 17,3 24,2	7,2 TOTAL H 17,3 23,9	14,4 IEAD IN M 16,9 23,1	21,6 METRES C 16,2 21,7	28,8 F COLUN 13,6 19,3	36,0 /N OF W 10,4 14,6	43,2 ATER 7,1 9,7	51,0 3,3 3,6
SVE Three-phases 105VE01005 105VE02007 105VE02011	kw 0,55 0,75 1,1	ESM90R/305 SVE	kW 3 x 0,69	380-460 V A 5,70 7,38 10,35	m3/h 0 H = 17,3	7,2 TOTAL H 17,3 23,9 34,5	14,4 EAD IN 1 16,9 23,1 33,7	21,6 METRES C 16,2	28,8 DF COLUN 13,6	36,0 AN OF W 10,4 14,6 22,4	43,2 ATER 7,1 9,7 17,1	51,0 3,3
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE03015	kW 0,55 0,75 1,1 1,5	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kW 3 x 0,69 3 x 0,94 3 x 1,37 3 x 1,83	380-460 V A 5,70 7,38 10,35 13,29	m3/h 0 H = 17,3 24,2 34,8 52,7	7,2 TOTAL H 17,3 23,9 34,5 52,2	14,4 EAD IN N 16,9 23,1 33,7 51,0	21,6 METRES C 16,2 21,7 32,3 46,1	28,8 F COLUN 13,6 19,3 27,7 38,1	36,0 MN OF W 10,4 14,6 22,4 30,8	43,2 ATER 7,1 9,7 17,1 23,5	51,0 3,3 3,6 11,0 15,1
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011	kw 0,55 0,75 1,1	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE	kW 3 x 0,69 3 x 0,94 3 x 1,37	380-460 V A 5,70 7,38 10,35	m3/h 0 H = 17,3 24,2 34,8	7,2 TOTAL H 17,3 23,9 34,5	14,4 EAD IN 1 16,9 23,1 33,7	21,6 METRES C 16,2 21,7 32,3	28,8 F COLUN 13,6 19,3 27,7	36,0 AN OF W 10,4 14,6 22,4	43,2 ATER 7,1 9,7 17,1	51,0 3,3 3,6 11,0
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015	kW 0,55 0,75 1,1 1,5	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kw 3 x 0,69 3 x 0,94 3 x 1,37 3 x 1,83 3 x 2,54	380-460 V A 5,70 7,38 10,35 13,29	m3/h 0 H = 17,3 24,2 34,8 52,7	7,2 TOTAL H 17,3 23,9 34,5 52,2	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1	21,6 METRES C 16,2 21,7 32,3 46,1	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8	36,0 MN OF W 10,4 14,6 22,4 30,8	43,2 ATER 7,1 9,7 17,1 23,5	51,0 3,3 3,6 11,0 15,1
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022	kW 0,55 0,75 1,1 1,5	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	kw 3 x 0,69 3 x 0,94 3 x 1,37 3 x 1,83 3 x 2,54	380-460 V A 5,70 7,38 10,35 13,29 17,58	m3/h 0 H = 17,3 24,2 34,8 52,7	7,2 TOTAL H 17,3 23,9 34,5 52,2	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1	21,6 METRES C 16,2 21,7 32,3 46,1 65,8	28,8 F COLUM 13,6 19,3 27,7 38,1 57,8 FRY	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5	43,2 ATER 7,1 9,7 17,1 23,5	51,0 3,3 3,6 11,0 15,1 25,9
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE	k₩ 0,55 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8	28,8 F COLUM 13,6 19,3 27,7 38,1 57,8 FERY 840,0 50,4	36,0 AN OF W. 10,4 14,6 22,4 30,8 47,5 1050,0 63,0	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6	51,0 3,3 3,6 11,0 15,1 25,9
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases	kw 0,55 0,75 1,1 1,5 2,2 Pn kw	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H =	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2 EAD IN N	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FERY 840,0 50,4 F COLUN	36,0 IN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007	kw 0,55 0,75 1,1 1,5 2,2 Pn kw 0,75	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE	kW 3 x 0,69 3 x 0,94 3 x 1,37 3 x 1,83 3 x 2,54 SMB * P ₁ kW 3 x 0,92	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2 EAD IN N 13,3	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCRY 840,0 50,4 FCOLUN 9,8	36,0 IN OF W. 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 IN OF W. 6,4	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8	51,0 3,3 11,0 15,1 25,9 1450,0 87,0
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2 EAD IN N 13,3 19,4	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCRY 840,0 50,4 FCOLUN 9,8 14,8	36,0 IN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 IN OF W 6,4 10,9	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0	51,0 3,3 11,0 15,1 25,9 1450,0 87,0 0,0 3,2
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P1 kW 3 × 0,92 3 × 1,33 3 × 1,76	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCN 840,0 50,4 F COLUN 9,8 14,8 22,2	36,0 IN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 IN OF W 6,4 10,9 16,4	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0 87,0 0,0 3,2 3,8
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015 155VE02022	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 17,61	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCRY 840,0 50,4 FCOLUN 9,8 14,8 22,2 33,4	36,0 IN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 IN OF W 6,4 10,9	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0	51,0 3,3 11,0 15,1 25,9 1450,0 87,0 0,0 3,2
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011 15SVE02015 15SVE02022	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 17,61 30 SET	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCN 840,0 50,4 F COLUN 9,8 14,8 22,2 33,4 FERY	36,0 IN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 IN OF W 6,4 10,9 16,4 26,8	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0 87,0 0,0 3,2 3,8 13,5
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011 15SVE02015 15SVE02022 ** PUMP TYPE	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 17,61 30 SET * I	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 //min 0	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FERY 840,0 50,4 FCOLUN 9,8 14,8 22,2 33,4 FERY 840,0 FCOLUN 9,8 14,8 22,2 33,4 FERY 840,0 FCOLUN 13,6 FCOLUN 14,8 22,2 33,4 FCOLUN FCOLUN 14,8 22,2 33,4 FCOLUN FCOLUN 14,8 22,2 33,4 FCOLUN	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W 6,4 10,9 16,4 26,8 1050,0	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0 0,0 3,2 3,8 13,5 1500,0
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011 15SVE02015 15SVE02022 ** PUMP TYPE SVE SVE	kw 0,55 0,75 1,1 1,5 2,2 PN kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE ESM90R/307 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB * P ₁	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 13,02 13,02 13,02 13,02 13,02 * I 30 SET * I 380-460 V	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 //min 0 m3/h 0	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0 12,6	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0 37,8	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FERY 840,0 50,4 F COLUN 9,8 14,8 22,2 33,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FORM 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 FERY 840,0 50,4 50,	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W 6,4 10,9 16,4 26,8 1050,0 63,0 63,0	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0 75,6	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0 87,0 0,0 3,2 3,8 13,5
SVE Three-phases 105VE01005 105VE02007 105VE02011 105VE03015 105VE04022 ** PUMP TYPE SVE Three-phases 155VE01007 155VE01011 155VE02015 155VE02022 ** PUMP TYPE SVE Three-phases	kw 0,55 0,75 1,1 1,5 2,2 PN kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR MOTOR	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB * P ₁ kW	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 17,61 30 SET * I 380-460 V A	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H =	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0 12,6 TOTAL H	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 420,0 25,2 EAD IN N	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0 37,8 METRES C	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCN 840,0 50,4 FCOLUN 9,8 14,8 22,2 33,4 FCN 840,0 50,4 FCN 840,0 50,4 FCN FCN 50,4 FCN FCN FCN FCN FCN FCN FCN FCN	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W 6,4 10,9 16,4 26,8 1050,0 63,0 AN OF W	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0 75,6 ATER	51,0 3,3 3,6 11,0 15,1 25,9 1450,0 87,0 0,0 3,2 3,8 13,5 1500,0 90,0
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE02015 15SVE02022 ** PUMP TSVE Three-phases SVE Three-phases 2SVE02022	kw 0,55 0,75 1,1 1,5 2,2 PN kw 0,75 1,1 1,5 2,2 PN kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR TYPE	kw 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kw 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB * P ₁ kw 3 × 0,92	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 13,02 13,02 13,02 30 SET * I 380-460 V A 7,14	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 //min 0 m3/h 0 H = 14,4	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0	14,4 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 14,1	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0 37,8 METRES C 12,5	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 KERY 840,0 50,4 F COLUN 9,8 14,8 22,2 33,4 KERY 840,0 50,4 FCOLUN 9,5	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W 6,4 10,9 16,4 26,8 1050,0 63,0 AN OF W 6,3	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0 75,6 ATER 2,9	51,0 3,3 11,0 15,1 25,9 1450,0 87,0 0,0 3,2 3,8 13,5 1500,0 90,0 0,0
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE01011 15SVE02015 15SVE02022 ** PUMP TYPE SVE Three-phases	kw 0,55 0,75 1,1 1,5 2,2 PN kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR MOTOR	kW 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kW 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB * P ₁ kW	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 13,02 13,02 30 SET * I 380-460 V A 7,14 10,41	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 /min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 /min 0 m3/h 0 H =	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0 12,6 TOTAL H	14,4 EAD IN N 16,9 23,1 33,7 51,0 68,1 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 420,0 25,2 EAD IN N	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0 37,8 METRES C	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 FCN 840,0 50,4 FCOLUN 9,8 14,8 22,2 33,4 FCN 840,0 50,4 FCN 840,0 50,4 FCN FCN 50,4 FCN FCN FCN FCN FCN FCN FCN FCN	36,0 AN OF W 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 AN OF W 6,4 10,9 16,4 26,8 1050,0 63,0 AN OF W	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0 75,6 ATER	51,0 3,3 11,0 15,1 25,9 1450,0 87,0 0,0 3,2 3,8 13,5 1500,0 90,0 0,0 3,2
SVE Three-phases 10SVE01005 10SVE02007 10SVE02011 10SVE03015 10SVE04022 ** PUMP TYPE SVE Three-phases 15SVE01007 15SVE02015 15SVE02022 ** PUMP TYPE SVE Three-phases SVE Three-phases 22SVE01007 22SVE01007	kw 0,55 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1 1,5 2,2 P _N kw 0,75 1,1 1,5 2,2	ESM90R/305 SVE ESM90R/307 SVE ESM90R/311 SVE ESM90R/315 SVE ESM90R/322 SVE MOTOR ESM90R/307 SVE ESM90R/315 SVE ESM90R/315 SVE ESM90R/322 SVE ESM90R/325 SVE ESM90R/325 SVE	kw 3 × 0,69 3 × 0,94 3 × 1,37 3 × 1,83 3 × 2,54 SMB * P ₁ kw 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54 SMB * P ₁ kw 3 × 0,92 3 × 1,33 3 × 1,76 3 × 2,54	380-460 V A 5,70 7,38 10,35 13,29 17,58 30 SET * I 380-460 V A 7,44 10,35 13,02 13,02 13,02 13,02 30 SET * I 380-460 V A 7,14	m3/h 0 H = 17,3 24,2 34,8 52,7 70,3 //min 0 m3/h 0 H = 14,2 20,5 29,6 42,7 //min 0 m3/h 0 H = 14,4 20,7	7,2 TOTAL H 17,3 23,9 34,5 52,2 69,7 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0 210,0 12,6 TOTAL H 13,9 20,1 29,1 42,0	14,4 16,9 23,1 33,7 51,0 68,1 Q 420,0 25,2 EAD IN N 13,3 19,4 28,3 41,1 Q 420,0 25,2 EAD IN N 14,1 20,5	21,6 METRES C 16,2 21,7 32,3 46,1 65,8 = DELIV 630,0 37,8 METRES C 12,3 18,4 26,8 39,7 = DELIV 630,0 37,8 METRES C 12,5 18,7	28,8 F COLUN 13,6 19,3 27,7 38,1 57,8 RERY 840,0 50,4 F COLUN 9,8 14,8 22,2 33,4 F COLUN 9,5 15,1	36,0 10,4 14,6 22,4 30,8 47,5 1050,0 63,0 10,9 16,4 26,8 1050,0 63,0 N OF W 6,3 11,5	43,2 ATER 7,1 9,7 17,1 23,5 37,4 1260,0 75,6 ATER 2,8 7,0 10,1 20,1 1260,0 75,6 ATER 2,9 7,8	51,0 3,3 11,0 15,1 25,9 1450,0 87,0 0,0 3,2 3,8 13,5 1500,0 90,0 0,0

Table refers to hydraulic performances with three pumps running, max rpm, friction loss not included

* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see see technical catalogue of single electric pump

g30_1-22sve-esmT-2p50-en_a_th

a **xylem** brand

SMB30/..HME BOOSTER SETS SERIES **THREE-PHASE TABLE OF HYDRAULIC PERFORMANCE**

** PUMP		MOTOR	SMB3	O SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	20,0	40,0	60,0	80,0	100,0	120,0	140,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	1,2	2,4	3,6	4,8	6,0	7,2	8,4
Three-phases	kW		kW	Α	F	I = TOTA	l head ii	N METRES	OF COLL	JMN OF V	VATER	
1HME05S03	0,55	ESM80/305 HM	3 x 0,49	4,38	44,7	44,8	44,9	44,1	39,2	32,5	25,7	19,0
1HME08S05	0,55	ESM80/305 HM	3 x 0,69	5,70	71,6	71,5	71,7	70,4	60,3	50,0	39,6	29,0
1HME11S07	0,75	ESM80/307 HM	3 x 0,91	7,23	98,5	98,5	98,8	94,3	80,7	66,8	52,9	38,6
1HME15S11	1,1	ESM80/311 HM	3 x 1,37	10,35	134,0	134,4	134,6	132,3	119,5	99,6	79,6	59,6
1HME17S15	1,5	ESM80/315 HM	3 x 1,81	13,17	151,8	152,2	152,7	149,6	141,6	128,6	110,7	87,1

** PUMP		MOTOR	SMB3	BO SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	40,0	80,0	120,0	160,0	200,0	240,0	260,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	2,4	4,8	7,2	9,6	12,0	14,4	15,6
Three-phases	kW		kW	Α	ł	I = TOTA	L HEAD II		OF COLL	JMN OF V	VATER	
3HME03S03	0,37	ESM80/303 HM	3 x 0,49	4,41	33,3	33,9	33,4	31,5	25,6	20,1	14,5	11,8
3HME05S05	0,55	ESM80/305 HM	3 x 0,7	5,76	55,5	56,5	55,7	47,5	38,2	29,4	20,4	16,0
3HME07S07	0,75	ESM80/307 HM	3 x 0,92	7,29	77,6	79,1	78,1	64,9	52,1	39,8	27,5	21,3
3HME09S11	1,1	ESM80/311 HM	3 x 1,37	10,35	99,8	101,8	100,3	93,7	76,1	59,6	43,0	34,7
3HME12S15	1,5	ESM80/315 HM	3 x 1,82	13,26	133,1	135,9	133,6	127,3	103,6	81,5	59,2	48,1
3HME14S22	2,2	ESM80/322 HM	3 x 2,53	17,52	155,4	158,3	156,1	149,5	139,0	121,7	93,9	79,8

** PUMP		MOTOR	SMB	BO SET				Q = DEL	IVERY			
TYPE				*1	l/min 0	70,0	140,0	210,0	280,0	350,0	420,0	510,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	4,2	8,4	12,6	16,8	21,0	25,2	30,6
Three-phases	kW		kW	Α	F	I = TOTA	l head ii		OF COLL	JMN OF V	VATER	
5HME02S03	0,37	ESM80/303 HM	3 x 0,5	4,44	22,2	22,4	21,9	19,8	16,2	13,0	9,9	6,0
5HME03S05	0,55	ESM80/305 HM	3 x 0,7	5,76	33,3	33,6	32,9	29,5	24,1	19,3	14,7	8,8
5HME04S07	0,75	ESM80/307 HM	3 x 0,92	7,26	44,4	44,7	43,8	40,1	32,8	26,4	20,2	12,2
5HME06S11	1,1	ESM80/311 HM	3 x 1,38	10,38	66,7	67,2	65,8	59,0	48,1	38,7	29,5	17,5
5HME08S15	1,5	ESM80/315 HM	3 x 1,83	13,32	88,9	89,5	87,7	80,2	65,5	52,8	40,5	24,4
5HME10S22	2,2	ESM80/322 HM	3 x 2,54	17,61	111,1	111,8	109,5	105,3	95,0	77,9	61,6	40,4

** PUMP		MOTOR	SMB3	80 SET				Q = DEL	IVERY.			
TYPE				*1	l/min 0	120,0	240,0	360,0	480,0	600,0	720,0	850,0
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	7,2	14,4	21,6	28,8	36,0	43,2	51,0
Three-phases	kW		kW	Α	F	I = TOTA	l head ii	METRES	OF COLL	JMN OF V	VATER	
10HME01S07	0,75	ESM80/307 HM	3 x 0,84	6,72	17,5	17,4	16,9	16,1	14,7	12,7	10,2	6,7
10HME02S11	1,1	ESM80/311 HM	3 x 1,37	10,35	34,8	34,9	33,8	32,3	27,2	21,9	16,6	11,1
10HME03S15	1,5	ESM80/315 HM	3 x 1,83	13,29	52,4	51,8	50,6	47,0	39,2	32,2	25,3	17,8
10HME04S22	2,2	ESM80/322 HM	3 x 2,54	17,61	69,8	69,1	67,3	65,1	56,9	47,3	37,8	27,5

** PUMP	MOTOR		MOTOR		MOTOR		MOTOR SMB30 SET		Q = DELIVERY							
TYPE				*1	l/min 0	210,0	420,0	630,0	840,0	1050,0	1260,0	1450,0				
HMES, HMEN	PN	TYPE	* P1	380-460 V	m3/h 0	12,6	25,2	37,8	50,4	63,0	75,6	87,0				
Three-phases	kW		kW	Α	H	I = TOTA	L HEAD II	N METRES	OF COLL	JMN OF V	VATER					
15HME01S11	1,1	ESM80/311 HM	3 x 0,84	10,35	20,9	20,5	19,7	18,8	16,4	12,7	8,8	5,2				
15HME02S15	1,5	ESM80/315 HM	3 x 1,85	13,41	42,7	41,8	35,9	29,8	24,2	18,2	11,3	5,1				
15HME03S22	2,2	ESM80/322 HM	3 x 2,5	17,40	64,0	64,1	50,5	40,6	31,9	23,4	15,4	10,0				
Table refers to hydraul	ax rpm, frictior	n loss not in	cluded			g30_1	-15hmes-e	esmT-2p50	D-en_a_th							

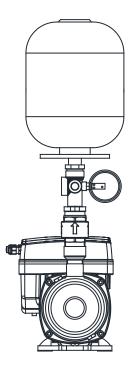
* Maximum value in specified range: P1 = input power; I = input nominal current absorbed by set

** For technical details see technical catalogue of single electric pump

Booster sets

MARKET SECTORS

RESIDENTIAL, COMMERCIAL, INDUSTRIAL

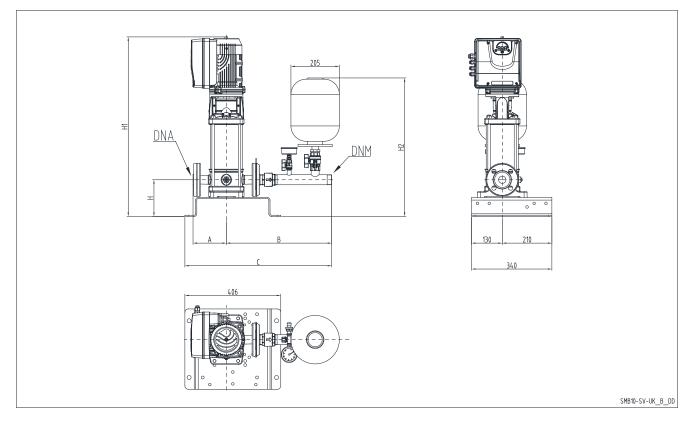

SMB10 Series

APPLICATIONS

•

Water supply and pressure boosting in:

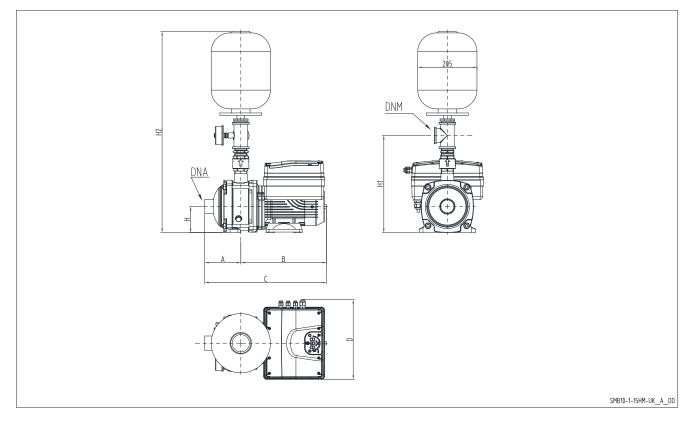
- apartments, villas, condominiums and residential buildings
- hotels, restaurants, spas
- various industrial applications


SPECIFICATIONS

- **e-SVE** vertical axis electric pump.
- e-HME..S horizontal axis electric pump.
- Flow rate: up to 30 m³/h.
- Head: up to 158 m.
- Maximum operating pressure: max 16 bar.
- Electric panel supply voltage: Standard version:
 - single-phase 1 x 230V \pm 10% (SMB../M2).
 - three-phase 3 x 400V \pm 10% (SMB../T4).
 - Special version:
 - three-phase 3 x 230V \pm 10% (SMB../T3).
- Frequency: 50Hz.
- Protection class IP55 for:
 - electrical pump motor
 - e-SM drive frequency converter
- Maximum electric pump power: 2,2 kW.
- Progressive motor start.
- Maximum pumped liquid temperature:
 - up to 80 °C for SMB.../SVE
 - up to 80 $^\circ C$ for SMB.../HME..S

SMB series booster sets with e-SV Smart and e-HM Smart series pumps are certified for use with drinking water.

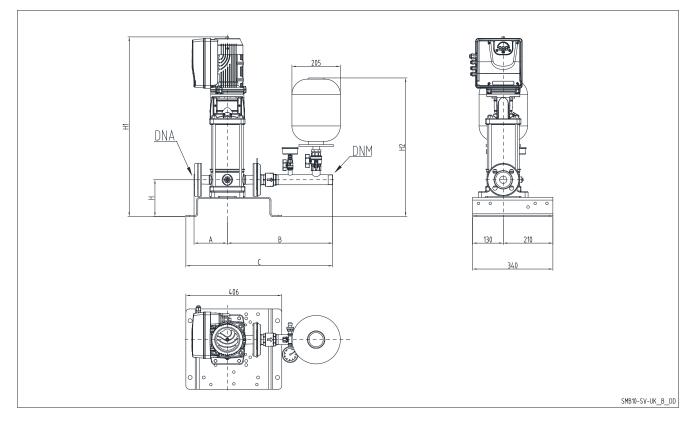
SET OF 1 PUMP SVE..F SERIES SINGLE-PHASE POWER SUPPLY (SMB10.../M2)



SMB 10	DNA	DNM	A	В	с	Н	H1	H2
1SVE05F003	Rp1"	R1"	144	436	611	155	660	568
1SVE08F005	Rp1"	R1"	144	436	611	155	720	568
1SVE11F007	Rp1"	R1"	144	436	611	155	780	568
1SVE15F011	Rp1"	R1"	144	436	611	155	860	568
3SVE03F003	Rp1"	R1"	144	436	611	155	620	568
3SVE05F005	Rp1"	R1"	144	436	611	155	660	568
3SVE07F007	Rp1"	R1"	144	436	611	155	700	568
3SVE09F011	Rp1"	R1"	144	436	611	155	740	568
3SVE11F015	Rp1"	R1"	144	436	611	155	780	568
5SVE02F003	Rp1"1/4	R1"1/4	144	446	621	155	610	586
5SVE03F005	Rp1"1/4	R1"1/4	144	446	621	155	635	586
5SVE04F007	Rp1"1/4	R1"1/4	144	446	621	155	660	586
5SVE06F011	Rp1"1/4	R1"1/4	144	446	621	155	710	586
5SVE08F015	Rp1"1/4	R1"1/4	144	446	621	155	760	586
10SVE01F005	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE02F007	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE02F011	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE03F015	Rp1"1/2	R1"1/2	162	455	630	160	721	594
15SVE01F007	Rp2"	R2"	177	534	709	170	741	743
15SVE01F011	Rp2"	R2"	177	534	709	170	741	743
15SVE02F015	Rp2"	R2"	177	534	709	170	741	743
22SVE01F007	Rp2"	R2"	177	534	709	170	741	743
22SVE01F011	Rp2"	R2"	177	534	709	170	741	743
22SVE02F015	Rp2"	R2"	177	534	709	170	741	743

smb10-uk-sv-mono_a_td

SET OF 1 PUMP HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB10.../M2)

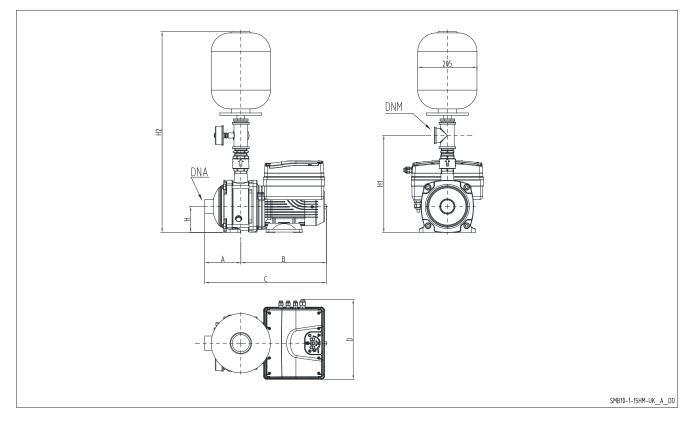


SMB 20	DNA	DNM	Α	В	С	D	н	H1	H2
1HME05	Rp 1"	Rp 1"	127	287	414	224	90	285	633
1HME08	Rp 1"	Rp 1"	171	287	467	224	90	285	633
1HME11	Rp 1"	Rp 1"	231	287	527	224	90	285	633
1HME15	Rp 1"	Rp 1"	311	287	607	224	90	285	633
1HME17	Rp 1"	Rp 1"	351	287	647	224	90	285	633
3HME03	Rp 1"	Rp 1"	87	287	374	224	90	285	633
3HME05	Rp 1"	Rp 1"	127	287	414	224	90	285	633
3HME07	Rp 1"	Rp 1"	151	287	447	224	90	285	633
3HME09	Rp 1"	Rp 1"	191	287	487	224	90	285	633
3HME12	Rp 1"	Rp 1"	251	287	547	224	90	285	633
5HME02	Rp 1" 1/4	Rp 1"	104	287	391	224	90	345	693
5HME03	Rp 1" 1/4	Rp 1"	104	287	391	224	90	345	693
5HME04	Rp 1" 1/4	Rp 1"	129	287	416	224	90	345	693
5HME06	Rp 1" 1/4	Rp 1"	158	287	454	224	90	345	693
5HME08	Rp 1" 1/4	Rp 1"	208	287	504	224	90	345	693
10HME01	Rp 1" 1/2	Rp 1" 1/4	125	297	422	224	90	337	702
10HME02	Rp 1" 1/2	Rp 1" 1/4	125	297	422	224	90	337	702
10HME03	Rp 1" 1/2	Rp 1" 1/4	125	297	422	224	90	337	702
15HME01	Rp 2"	Rp 1" 1/2	144	297	457	224	90	337	702
15HME02	Rp 2"	Rp 1" 1/2	144	297	457	224	90	337	702

smb10_1-15hm-mono-uk_a_td

a **xylem** brand

SET OF 1 PUMP SVE..F SERIES THREE-PHASE POWER SUPPLY (SMB10.../T3-T4)



SMB 10	DNA	DNM	А	В	с	н	H1	H2
1SVE05F003	Rp1"	R1"	144	436	611	155	660	568
1SVE08F005	Rp1"	R1"	144	436	611	155	720	568
1SVE11F007	Rp1"	R1"	144	436	611	155	780	568
1SVE15F011	Rp1"	R1"	144	436	611	155	860	568
3SVE03F003	Rp1"	R1"	144	436	611	155	620	568
3SVE05F005	Rp1"	R1"	144	436	611	155	660	568
3SVE07F007	Rp1"	R1"	144	436	611	155	700	568
3SVE09F011	Rp1"	R1"	144	436	611	155	740	568
3SVE11F015	Rp1"	R1"	144	436	611	155	780	568
5SVE02F003	Rp1"1/4	R1"1/4	144	446	621	155	610	586
5SVE03F005	Rp1"1/4	R1"1/4	144	446	621	155	635	586
5SVE04F007	Rp1"1/4	R1"1/4	144	446	621	155	660	586
5SVE06F011	Rp1"1/4	R1"1/4	144	446	621	155	710	586
5SVE08F015	Rp1"1/4	R1"1/4	144	446	621	155	760	586
5SVE12F022	Rp1"1/4	R1"1/4	144	446	621	155	860	586
10SVE01F005	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE02F007	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE02F011	Rp1"1/2	R1"1/2	162	455	630	160	689	594
10SVE03F015	Rp1"1/2	R1"1/2	162	455	630	160	721	594
10SVE04F022	Rp1"1/2	R1"1/2	162	455	630	160	753	594
15SVE01F007	Rp2"	R2"	177	534	709	170	741	743
15SVE01F011	Rp2"	R2"	177	534	709	170	741	743
15SVE02F015	Rp2"	R2"	177	534	709	170	741	743
15SVE02F022	Rp2"	R2"	177	534	709	170	741	743
22SVE01F007	Rp2"	R2"	177	534	709	170	741	743
22SVE01F011	Rp2"	R2"	177	534	709	170	741	743
22SVE02F015	Rp2"	R2"	177	534	709	170	741	743
22SVE02F022	Rp2"	R2"	177	534	709	170	741	743

smb10-uk-sv-tri_a_td

SET OF 1 PUMP HME..S SERIES THREE-PHASE POWER SUPPLY (SMB10.../T3-T4)

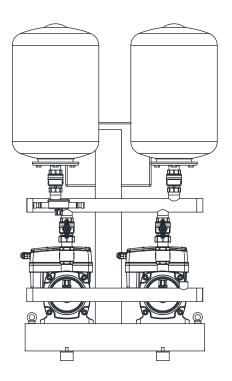
SMB 20	DNA	DNM	Α	В	С	D	н	H1	H2
1HME05	Rp 1"	Rp 1"	127	287	414	277	90	285	633
1HME08	Rp 1"	Rp 1"	171	296	467	277	90	285	633
1HME11	Rp 1"	Rp 1"	231	296	527	277	90	285	633
1HME15	Rp 1"	Rp 1"	311	296	607	277	90	285	633
1HME17	Rp 1"	Rp 1"	351	296	647	277	90	285	633
3HME03	Rp 1"	Rp 1"	87	287	374	277	90	285	633
3HME05	Rp 1"	Rp 1"	127	287	414	277	90	285	633
3HME07	Rp 1"	Rp 1"	151	296	447	277	90	285	633
3HME09	Rp 1"	Rp 1"	191	296	487	277	90	285	633
3HME12	Rp 1"	Rp 1"	251	296	547	277	90	285	633
3HME14	Rp 1"	Rp 1"	291	296	587	277	90	285	633
5HME02	Rp 1" 1/4	Rp 1"	104	287	391	277	90	345	693
5HME03	Rp 1" 1/4	Rp 1"	104	287	391	277	90	345	693
5HME04	Rp 1" 1/4	Rp 1"	129	287	416	277	90	345	693
5HME06	Rp 1" 1/4	Rp 1"	158	296	454	277	90	345	693
5HME08	Rp 1" 1/4	Rp 1"	208	296	504	277	90	345	693
5HME10	Rp 1" 1/4	Rp 1"	258	296	554	277	90	345	693
10HME01	Rp 1" 1/2	Rp 1" 1/4	125	297	422	277	90	337	702
10HME02	Rp 1" 1/2	Rp 1" 1/4	125	297	422	277	90	337	702
10HME03	Rp 1" 1/2	Rp 1" 1/4	125	297	422	277	90	337	702
10HME04	Rp 1" 1/2	Rp 1" 1/4	157	297	454	277	90	337	702
15HME01	Rp 2"	Rp 1" 1/2	144	313	457	277	90	337	702
15HME02	Rp 2"	Rp 1" 1/2	144	313	457	277	90	337	702
15HME03	Rp 2"	Rp 1" 1/2	144	361	505	277	90	337	702

smb10_1-15hm-tri-uk_a_td

Booster sets

MARKET SECTORS

RESIDENTIAL, COMMERCIAL, INDUSTRIAL


SMB20 Series

APPLICATIONS

٠

Water supply and pressure boosting in:

- apartments, villas, condominiums and residential buildings
- hotels, restaurants, spas
- various industrial applications

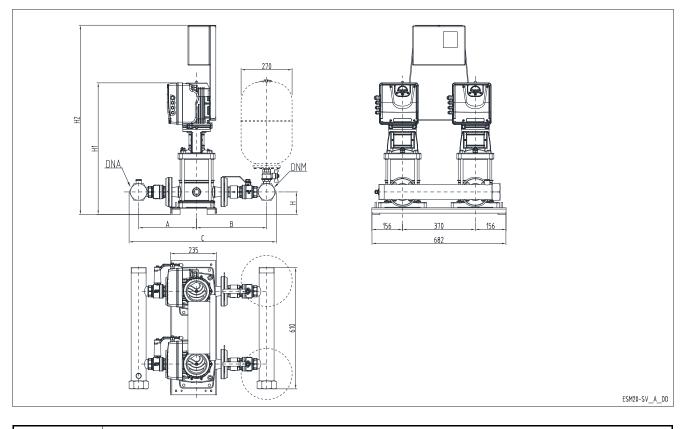
SPECIFICATIONS

- e-SVE vertical axis electric pump.
- e-HME..S horizontal axis electric pump.
- Flow rate: up to 60 m³/h.
- Head: up to 158 m.
- Maximum operating pressure: max 16 bar.

• Electric panel supply voltage:

Standard version:

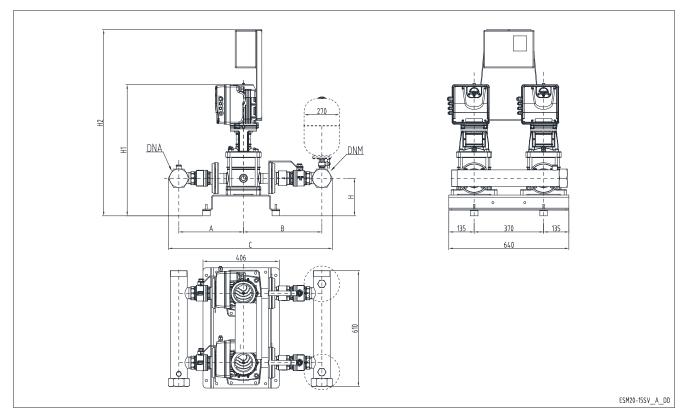
- single-phase 1 x 230V \pm 10% (SMB../M2).
- three-phase 3 x 400V \pm 10% (SMB../T4).
- Special version:
- three-phase 3 x 230V \pm 10% (SMB../T3).


• Frequency: 50Hz.

- Protection class IP55 for:
 - electrical control panel
- electrical pump motor
- e-SM drive frequency converter
- Maximum electric pump power: 2 x 2,2 kW.
- Progressive motor start.
- Maximum pumped liquid temperature:
 - up to 80 °C for SMB.../SVE
 - up to 80 °C for SMB.../HME..S

SMB series booster sets with e-SV Smart and e-HM Smart series pumps are certified for use with drinking water.

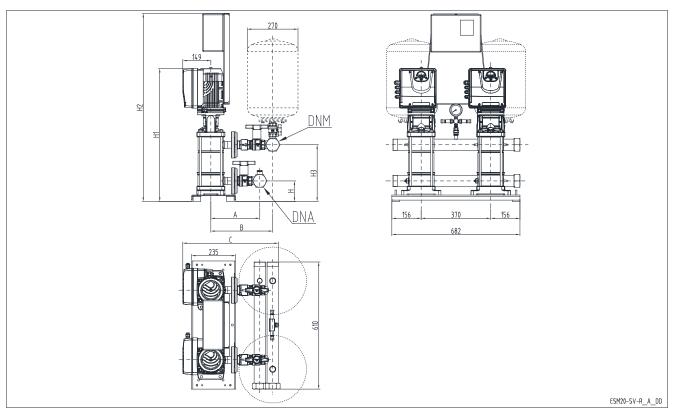
SET OF 2 PUMPS SVE..F SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)


SMB 20	DNA	DNM		4		3		с	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
1SVE05F003	R2"	R2"	265	257	311	363	636	680	109	614	988
1SVE08F005	R2"	R2"	265	257	311	363	636	680	109	674	1048
1SVE11F007	R2"	R2"	265	257	311	363	636	680	109	734	1108
1SVE15F011	R2"	R2"	265	257	311	363	636	680	109	814	1188
3SVE03F003	R2"	R2"	265	257	311	363	636	680	109	574	948
3SVE05F005	R2"	R2"	265	257	311	363	636	680	109	614	988
3SVE07F007	R2"	R2"	265	257	311	363	636	680	109	654	1028
3SVE09F011	R2"	R2"	265	257	311	363	636	680	109	694	1068
3SVE11F015	R2"	R2"	265	257	311	363	636	680	109	734	1108
5SVE02F003	R2"	R2"	269	267	329	387	658	714	109	564	938
5SVE03F005	R2"	R2"	269	267	329	387	658	714	109	589	963
5SVE04F007	R2"	R2"	269	267	329	387	658	714	109	614	988
5SVE06F011	R2"	R2"	269	267	329	387	658	714	109	664	1038
5SVE08F015	R2"	R2"	269	267	329	387	658	714	109	714	1088
10SVE01F005	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE02F007	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE02F011	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE03F015	R2"1/2	R2"1/2	294	301	356	453	726	830	114	675	1049

Dimensions in mm. ± 10 mm tolerance range.

smb20-uk-sv-f_a_td

SET OF 2 PUMPS SVE..F SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)

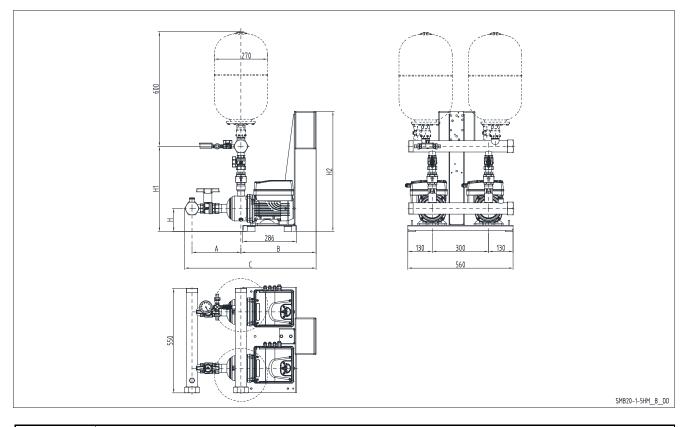

DNA	DNM	ł	4	I	3		c	н	H1	H2
		STD	AISI	STD	AISI	STD	AISI			
R3"	R3"	345	367	418	423	851	880	200	771	1145
R3"	R3"	345	367	418	423	851	880	200	771	1145
R3"	R3"	345	367	418	423	851	880	200	771	1145
R3"	R3"	345	367	418	423	851	880	200	771	1145
R3"	R3"	345	367	418	423	851	880	200	771	1145
R3"	R3"	345	367	418	423	851	880	200	771	1145
	R3" R3" R3" R3" R3"	R3" R3" R3" R3" R3" R3" R3" R3" R3" R3" R3" R3" R3" R3"	STD R3" R3" 345 R3" R3" 345	STD AISI R3" R3" 345 367 R3" R3" 345 367	STD AISI STD R3" R3" 345 367 418 R3" R3" 345 367 418	STD AISI STD AISI R3" R3" 345 367 418 423 R3" R3" 345 367 418 423	STD AISI STD AISI STD R3" R3" 345 367 418 423 851 R3" R3" 345 367 418 423 851	STD AISI STD AISI STD AISI R3" R3" 345 367 418 423 851 880 R3" R3" 345 367 418 423 851 880	STD AISI STD AISI STD AISI STD AISI R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200 R3" R3" 345 367 418 423 851 880 200	STD AISI STD AISI STD AISI Maisi STD AISI R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771 R3" R3" 345 367 418 423 851 880 200 771

Dimensions in mm. ± 10 mm tolerance range.

smb20-uk-15sv-f_a_td

a **xylem** brand

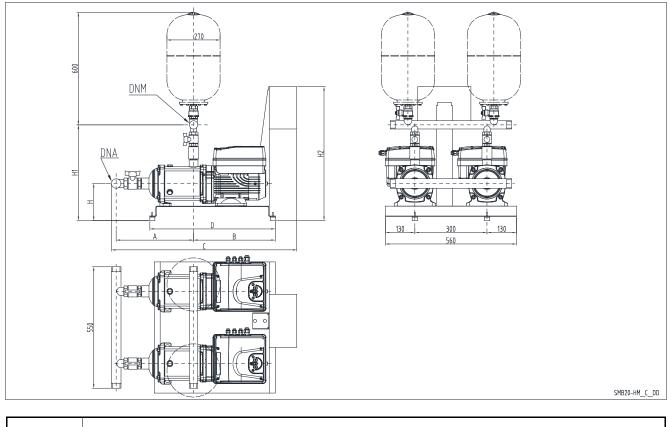
SET OF 2 PUMPS SVE..R SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)


SMB 20	DNA	DNM		A		В	(2	н	H1	H2	H3
			STD	AISI	STD	AISI	STD	AISI				
1SVE08R005	R2"	R2"	265	257	311	363	490	542	109	674	1048	261
1SVE11R007	R2"	R2"	265	257	311	363	490	542	109	734	1108	321
1SVE15R011	R2"	R2"	265	257	311	363	490	542	109	814	1188	401
3SVE07R007	R2"	R2"	265	257	311	363	490	542	109	654	1028	241
3SVE09R011	R2"	R2"	265	257	311	363	490	542	109	694	1068	281
3SVE11R015	R2"	R2"	265	257	311	363	490	542	109	734	1108	301
5SVE08R015	R2"	R2"	269	267	329	387	508	566	109	714	1088	301
Dimensions in mm	+ 10 mm to	lerance rand	10								smb20-i	ık-sv-r a td

Dimensions in mm. \pm 10 mm tolerance range.

smb20-uk-sv-r_a_td

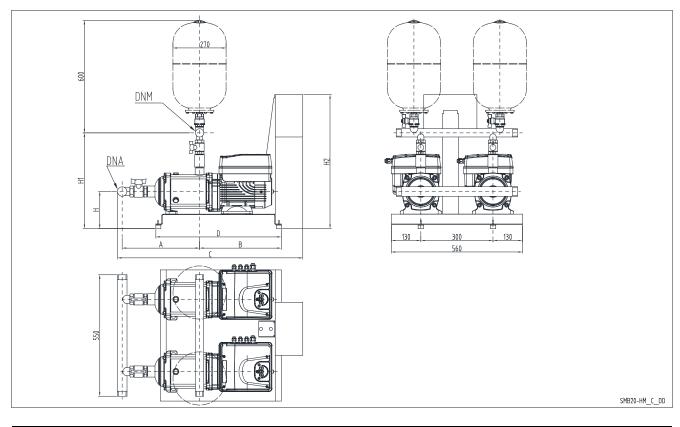
SET OF 2 PUMPS HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)


SMB 20	DNA	DNM		4	В		C	н	н	1	H2
			STD	AISI		STD	AISI		STD	AISI	
1HME05	R 2"	R 2"	264	308	482	776	830	123	408	446	720
3HME03	R 2"	R 2"	224	268	482	736	790	123	408	446	720
3HME05	R 2"	R 2"	264	308	482	776	830	123	408	446	720
5HME02	R 2"	R 2"	260	320	482	772	842	123	453	527	720
5HME03	R 2"	R 2"	260	320	482	772	842	123	453	527	720
5HME04	R 2"	R 2"	285	345	482	797	867	123	453	527	720

Dimensions in mm. ± 10 mm tolerance range.

smb20_1-5hms-uk_c_td

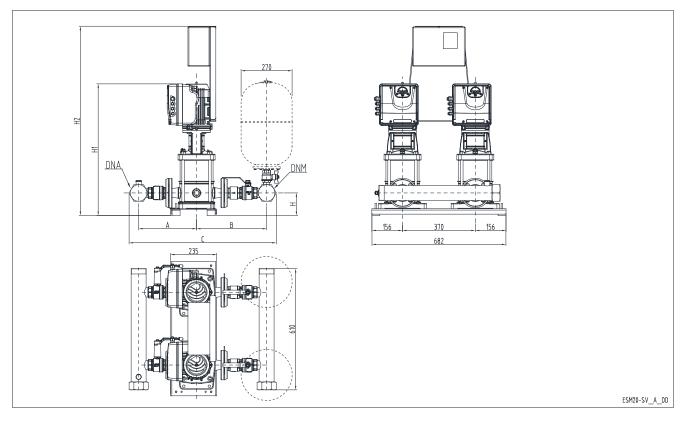
SET OF 2 PUMPS HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)


SMB 20	DNA	DNM		4	В		с	D	н	H	41	H2
			STD	AISI		STD	AISI			STD	AISI	
1HME08	R 2"	R 2"	308	352	349	830	874	590	205	490	528	802
1HME11	R 2"	R 2"	368	412	349	890	934	590	205	490	528	802
1HME15	R 2"	R 2"	448	492	349	970	1014	762	205	490	528	802
1HME17	R 2"	R 2"	488	532	349	1010	1054	762	205	490	528	802
3HME07	R 2"	R 2"	288	332	349	810	854	590	205	490	528	802
3HME09	R 2"	R 2"	328	372	349	850	894	590	205	490	528	802
3HME12	R 2"	R 2"	388	432	349	910	954	590	205	490	528	802
5HME06	R 2"	R 2"	314	374	349	836	896	590	205	551	625	802
5HME08	R 2"	R 2"	364	424	349	886	946	590	205	551	625	802
10HME01	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802
10HME02	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802
10HME03	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802

Dimensions in mm. ± 10 mm tolerance range.

smb20_1-10hms-uk_b_td

SET OF 2 PUMPS HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB20.../M2)

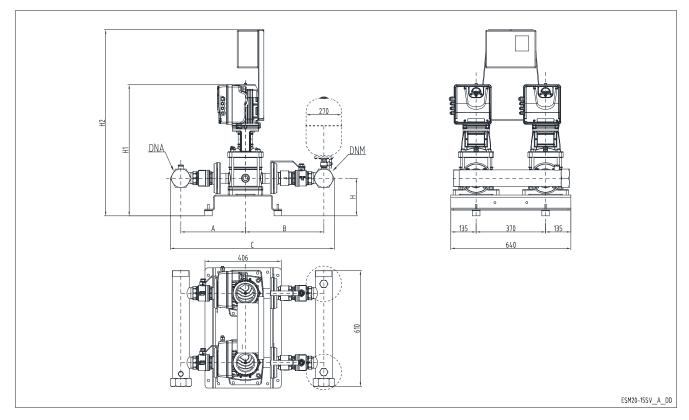

SMB 20	DNA	DNM	.	A	В	.	с	D	н	ŀ	11	H2
			STD	AISI		STD	AISI			STD	AISI]
15HME01	R3"	R3"	362	422	366	915	975	590	205	651	704	802
15HME02	R3"	R3"	362	422	366	915	975	590	205	651	704	802
											1.20 451	

Dimensions in mm. ± 10 mm tolerance range.

smb20_15hm-uk_b_td

a **xylem** brand

SET OF 2 PUMPS SVE..F SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)


SMB 20	DNA	DNM		4		В		с	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
1SVE05F003	R2"	R2"	256	257	311	363	627	680	109	614	988
1SVE08F005	R2"	R2"	256	257	311	363	627	680	109	674	1048
1SVE11F007	R2"	R2"	256	257	311	363	627	680	109	734	1108
1SVE15F011	R2"	R2"	256	257	311	363	627	680	109	814	1188
3SVE03F003	R2"	R2"	256	257	311	363	627	680	109	574	948
3SVE05F005	R2"	R2"	256	257	311	363	627	680	109	614	988
3SVE07F007	R2"	R2"	256	257	311	363	627	680	109	654	1028
3SVE09F011	R2"	R2"	256	257	311	363	627	680	109	694	1068
3SVE11F015	R2"	R2"	256	257	311	363	627	680	109	734	1108
5SVE02F003	R2"	R2"	260	267	329	387	649	714	109	564	938
5SVE03F005	R2"	R2"	260	267	329	387	649	714	109	589	963
5SVE04F007	R2"	R2"	260	267	329	387	649	714	109	614	988
5SVE06F011	R2"	R2"	260	267	329	387	649	714	109	664	1038
5SVE08F015	R2"	R2"	260	267	329	387	649	714	109	714	1088
5SVE12F022	R2"	R2"	260	267	329	387	649	714	109	814	1188
10SVE01F005	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE02F007	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE02F011	R2"1/2	R2"1/2	294	301	356	453	726	830	114	643	1017
10SVE03F015	R2"1/2	R2"1/2	294	301	356	453	726	830	114	675	1049
10SVE04F022	R2"1/2	R2"1/2	294	301	356	453	726	830	114	707	1081

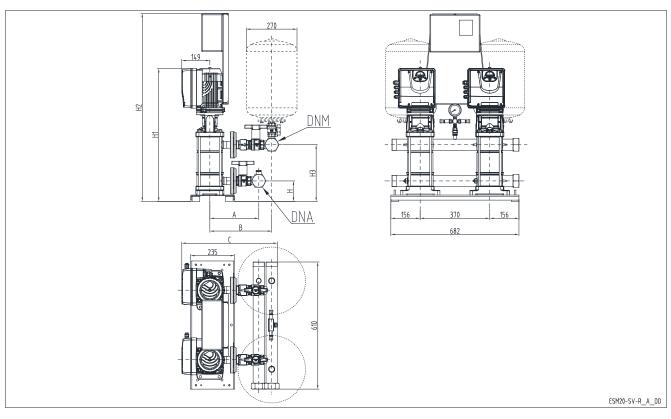
Dimensions in mm. ± 10 mm tolerance range.

smb20-uk-sv-f-tri_a_td

a **xylem** brand

SET OF 2 PUMPS SVE..F SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)

SMB 20	DNA	DNM		4	I	3		С	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
15SVE01F007	R3"	R3"	345	367	418	423	851	880	200	771	1145
15SVE01F011	R3"	R3"	345	367	418	423	851	880	200	771	1145
15SVE02F015	R3"	R3"	345	367	418	423	851	880	200	771	1145
15SVE02F022	R3"	R3"	345	367	418	423	851	880	200	771	1145
22SVE01F007	R3"	R3"	345	367	418	423	851	880	200	771	1145
22SVE01F011	R3"	R3"	345	367	418	423	851	880	200	771	1145
22SVE02F015	R3"	R3"	345	367	418	423	851	880	200	771	1145
22SVE02F022	R3"	R3"	345	367	418	423	851	880	200	771	1145
Dimensions in mm	+ 10 mm tole	ance range								mb20-uk-1	sv-f-tri a to

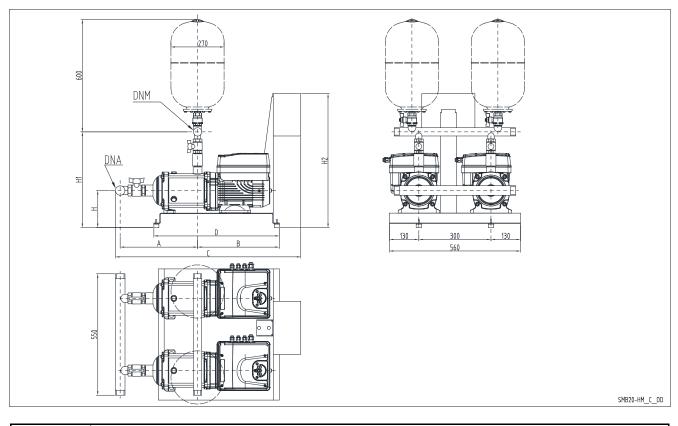

Dimensions in mm. ± 10 mm tolerance range.

smb20-uk-15sv-f-tri_a_td

(LOWARA

a **xylem** brand

SET OF 2 PUMPS SVE..R SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)

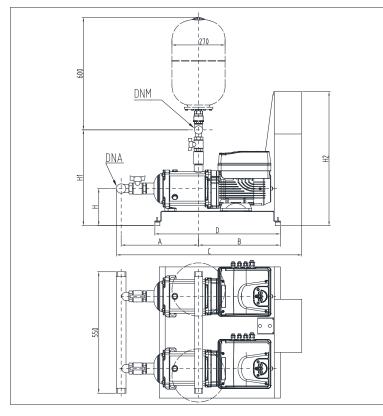


SMB 20	DNA	DNM	Α		В		С		н	H1	H2	H3
			STD	AISI	STD	AISI	STD	AISI				
1SVE08R005	R2"	R2"	256	257	311	363	490	542	109	674	986	261
1SVE11R007	R2"	R2"	256	257	311	363	490	542	109	734	1046	321
1SVE15R011	R2"	R2"	256	257	311	363	490	542	109	814	1126	401
3SVE07R007	R2"	R2"	256	257	311	363	490	542	109	654	966	241
3SVE09R011	R2"	R2"	256	257	311	363	490	542	109	694	1006	281
3SVE11R015	R2"	R2"	256	257	311	363	490	542	109	734	1046	301
5SVE08R015	R2"	R2"	260	267	329	387	508	566	109	714	1026	301
5SVE12R022	R2"	R2"	260	267	329	387	508	566	109	814	1126	301

smb20-sv-r-tri_a_

a **xylem** brand

SET OF 2 PUMPS HME..S SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)


SMB 20	DNA	DNM		Α		с		н	H1		H2
			STD	AISI		STD	AISI		STD	AISI	
1HME05	R 2"	R 2"	264	308	438	732	747	123	408	446	688
3HME03	R 2"	R 2"	224	268	438	692	707	123	408	446	688
3HME05	R 2"	R 2"	264	308	438	732	747	123	408	446	688
5HME02	R 2"	R 2"	260	320	438	728	759	123	453	527	688
5HME03	R 2"	R 2"	260	320	438	728	759	123	453	527	688
5HME04	R 2"	R 2"	285	345	438	753	784	123	453	527	688

Dimensions in mm. ± 10 mm tolerance range.

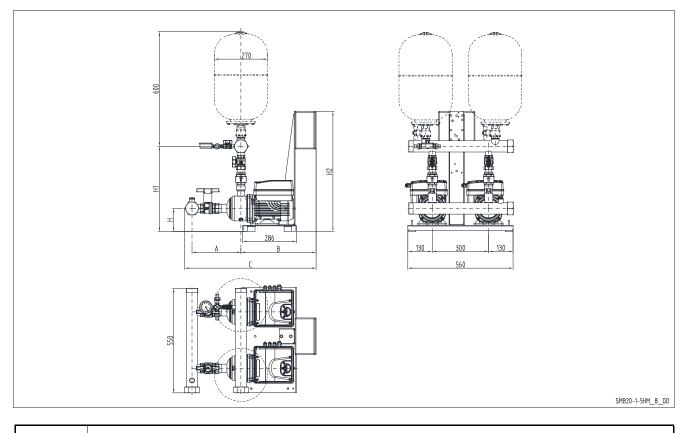
smb20_1-5hms-tri-uk_a_td

a **xylem** brand

SET OF 2 PUMPS HME..S SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)

	==+==
	- E
C	
161 - 181	167 30
P	
<u> </u>	<u> </u>
	300 130
	560

SMB20-HM_C_DD


SMB 20	DNA	DNM		4	В		с	D	н	н	1	H2
			STD	AISI		STD	AISI			STD	AISI	
1HME08	R 2"	R 2"	308	352	349	785	829	590	205	490	528	770
1HME11	R 2"	R 2"	368	412	349	845	889	590	205	490	528	770
1HME15	R 2"	R 2"	448	492	349	925	969	762	205	490	528	770
1HME17	R 2"	R 2"	488	532	349	965	1009	762	205	490	528	770
3HME07	R 2"	R 2"	288	332	349	765	809	590	205	490	528	770
3HME09	R 2"	R 2"	328	372	349	805	849	590	205	490	528	770
3HME12	R 2"	R 2"	388	432	349	865	909	590	205	490	528	770
3HME14	R 2"	R 2"	428	472	349	905	949	590	205	490	528	770
5HME06	R 2"	R 2"	314	374	349	791	851	590	205	551	625	770
5HME08	R 2"	R 2"	364	424	349	841	901	590	205	551	625	770
5HME10	R 2"	R 2"	414	474	349	891	951	590	205	551	625	770
10HME01	R 2"1/2	R 2"1/2	301	361	350	787	847	590	205	611	709	770
10HME02	R 2"1/2	R 2"1/2	301	361	350	787	847	590	205	611	709	770
10HME03	R 2"1/2	R 2"1/2	301	361	350	787	847	590	205	611	709	770
10HME04	R 2"1/2	R 2"1/2	333	393	350	819	879	590	205	611	709	770

Dimensions in mm. ± 10 mm tolerance range.

smb20_1-10hms-tri-uk_a_td

a **xylem** brand

SET OF 2 PUMPS HME..S SERIES THREE-PHASE POWER SUPPLY (SMB20.../T3-T4)

SMB 20	DNA	DNM		Α			с		н	н	1	H2
			STD	AISI		STD	AISI			STD	AISI	
15HME01	R3"	R3"	362	422	366	870	930	590	205	651	704	770
15HME02	R3"	R3"	362	422	366	870	930	590	205	651	704	770
15HME03	R3"	R3"	362	422	366	870	930	590	205	651	704	770

Dimensions in mm. ± 10 mm tolerance range.

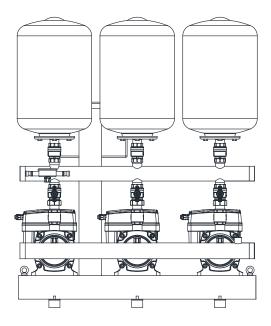
smb20_15hms-tri-uk_a_td

(LOWARA

Booster sets

MARKET SECTORS

RESIDENTIAL, COMMERCIAL, INDUSTRIAL


SMB30 Series

APPLICATIONS

٠

Water supply and pressure boosting in:

- apartments, villas, condominiums and residential buildings.
- hotels, restaurants, spas.
- various industrial applications.

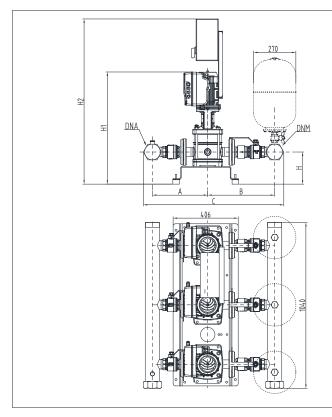
SPECIFICATIONS

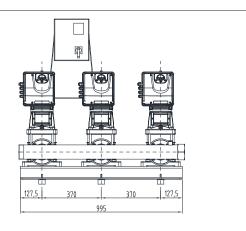
- e-SVE vertical axis electric pump.
- e-HME..S horizontal axis electric pump.
- Flow rate: up to 90 m³/h.
- Head: up to 158 m.
- Maximum operating pressure: max 16 bar.

• Electric panel supply voltage: Standard version:

- single-phase 1 x 230V \pm 10% (SMB../M2).
- three-phase 3 x 400V \pm 10% (SMB../T4).
- Special version:
- three-phase 3 x 230V \pm 10% (SMB../T3).

• Frequency: 50Hz.


• Protection class IP55 for:

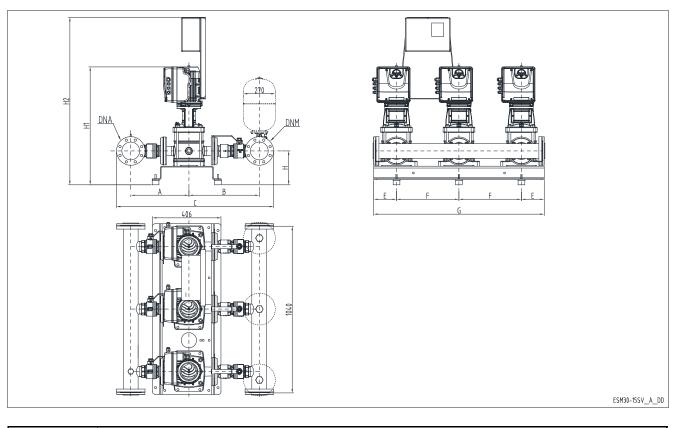

- electrical control panel
- electrical pump motor
- e-SM drive frequency converter
- Maximum electric pump power: 3 x 2,2 kW.
- Progressive motor start.
- Maximum pumped liquid temperature:
 - up to 80 $^\circ C$ for SMB.../SVE
 - up to 80 °C for SMB.../HME..S

SMB series booster sets with e-SV Smart and e-HM Smart series pumps are certified for use with drinking water.

a **xylem** brand

SET OF 3 PUMPS SVE..F SERIES SINGLE-PHASE POWER SUPPLY (SMB30.../M2)

ESM30-SV_A_DD

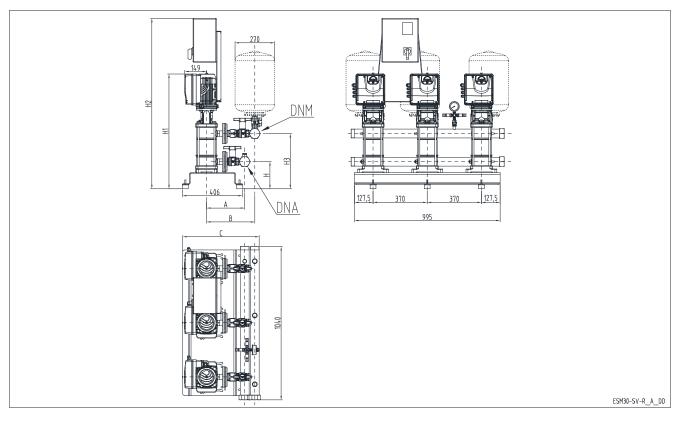

SMB 30	DNA	DNM	1	4	I	В		С	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
1SVE05F003	R2"	R2"	265	257	311	363	636	680	185	690	1064
1SVE08F005	R2"	R2"	265	257	311	363	636	680	185	750	1124
1SVE11F007	R2"	R2"	265	257	311	363	636	680	185	810	1184
1SVE15F011	R2"	R2"	265	257	311	363	636	680	185	890	1264
3SVE03F003	R2"	R2"	265	257	311	363	636	680	185	650	1024
3SVE05F005	R2"	R2"	265	257	311	363	636	680	185	690	1064
3SVE07F007	R2"	R2"	265	257	311	363	636	680	185	730	1104
3SVE09F011	R2"	R2"	265	257	311	363	636	680	185	770	1144
3SVE11F015	R2"	R2"	265	257	311	363	636	680	185	810	1184
5SVE02F003	R2"	R2"	269	267	329	387	658	714	185	640	1014
5SVE03F005	R2"	R2"	269	267	329	387	658	714	185	665	1039
5SVE04F007	R2"	R2"	269	267	329	387	658	714	185	690	1064
5SVE06F011	R2"	R2"	269	267	329	387	658	714	185	740	1114
5SVE08F015	R2"	R2"	269	267	329	387	658	714	185	790	1164
10SVE01F005	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1093
10SVE02F007	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1093
10SVE02F011	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1093
10SVE03F015	R2"1/2	R2"1/2	294	301	356	453	726	830	190	751	1125

Dimensions in mm. ± 10 mm tolerance range.

smb30-sv-f_a_td

a **xylem** brand

SET OF 3 PUMPS SVE..F SERIES SINGLE-PHASE POWER SUPPLY (SMB30.../M2)

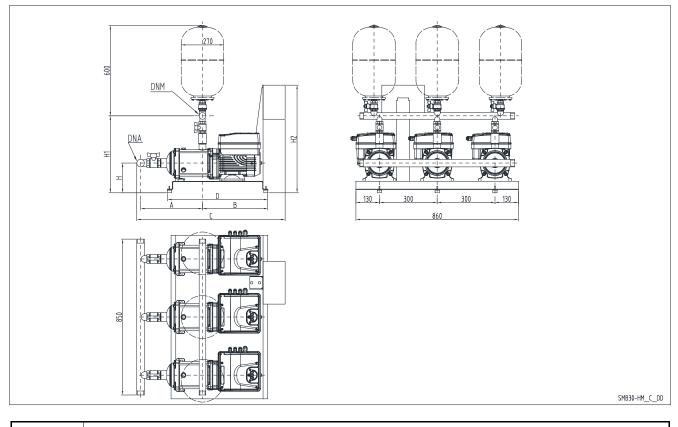

SMB 30	DNA	DNM		A		В		с	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
15SVE01F007	100	80	357	363	418	408	984	981	200	771	1057
15SVE01F011	100	80	357	363	418	408	984	981	200	771	1057
15SVE02F015	100	80	357	363	418	408	984	981	200	771	1057
22SVE01F007	100	100	357	363	430	421	1007	1004	200	771	1057
22SVE01F011	100	100	357	363	430	421	1007	1004	200	771	1057
22SVE02F015	100	100	357	363	430	421	1007	1004	200	771	1057
										1.00	45 6 11

Dimensions in mm. \pm 10 mm tolerance range.

smb30-15sv-f_a_td

a **xylem** brand

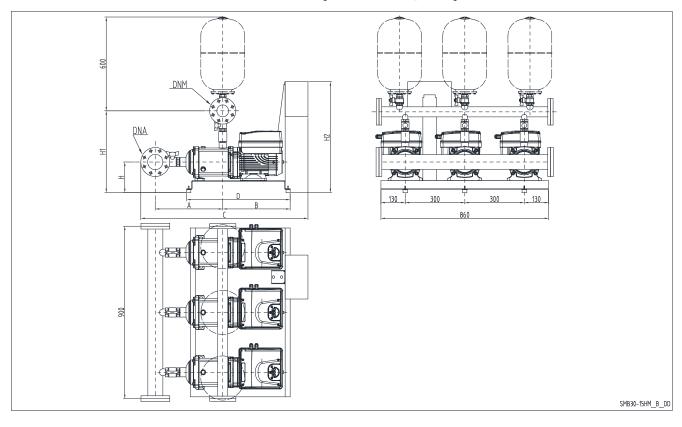
SET OF 3 PUMPS SVE..R SERIES SINGLE-PHASE POWER SUPPLY (SMB30.../M2)



SMB 30	DNA	DNM		4	I	3		2	н	H1	H2	H3
			STD	AISI	STD	AISI	STD	AISI				
1SVE08R005	R2"	R2"	265	257	311	363	490	542	185	750	1124	337
1SVE11R007	R2"	R2"	265	257	311	363	490	542	185	810	1184	397
1SVE15R011	R2"	R2"	265	257	311	363	490	542	185	890	1264	477
3SVE07R007	R2"	R2"	265	257	311	363	490	542	185	730	1104	317
3SVE09R011	R2"	R2"	265	257	311	363	490	542	185	770	1144	357
3SVE11R015	R2"	R2"	265	257	311	363	490	542	185	810	1184	377
5SVE08R015	R2"	R2"	269	267	329	387	508	566	185	790	1164	377
Dimensions in mm	+ 10 mm to	lerance rand	16								smb3	0-sv-r a td

Dimensions in mm. ± 10 mm tolerance range.

SET OF 3 PUMPS HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB30.../M2)

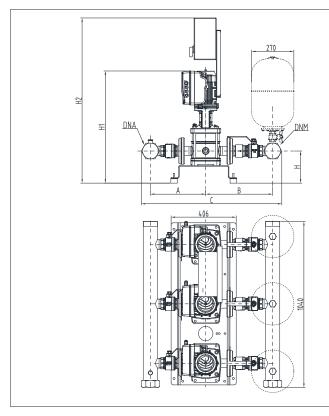

SMB 30	DNA	DNM		4	В		с	D	н	н	11	H2
			STD	AISI		STD	AISI			STD	AISI	
1HME05	R 2"	R 2"	264	308	340	777	821	590	205	408	446	802
1HME08	R 2"	R 2"	308	352	349	830	874	590	205	490	528	802
1HME11	R 2"	R 2"	368	412	349	890	934	590	205	490	528	802
1HME15	R 2"	R 2"	448	492	349	970	1014	762	205	490	528	802
1HME17	R 2"	R 2"	488	532	349	1010	1054	762	205	490	528	802
3HME03	R 2"	R 2"	224	268	340	737	781	590	205	408	446	802
3HME05	R 2"	R 2"	264	308	340	777	821	590	205	408	446	802
3HME07	R 2"	R 2"	288	332	349	810	854	590	205	490	528	802
3HME09	R 2"	R 2"	328	372	349	850	894	590	205	490	528	802
3HME12	R 2"	R 2"	388	432	349	910	954	590	205	490	528	802
5HME02	R 2"	R 2"	260	320	340	773	833	590	205	469	543	802
5HME03	R 2"	R 2"	260	320	340	773	833	590	205	469	543	802
5HME04	R 2"	R 2"	285	345	340	798	858	590	205	469	543	802
5HME06	R 2"	R 2"	314	374	349	836	896	590	205	551	625	802
5HME08	R 2"	R 2"	364	424	349	886	946	590	205	551	625	802
10HME01	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802
10HME02	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802
10HME03	R 2"1/2	R 2"1/2	301	361	350	832	892	590	205	611	709	802

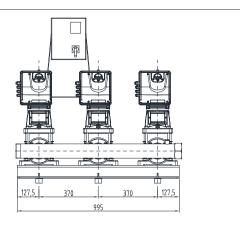
Dimensions in mm. ± 10 mm tolerance range.

smb30_1-10hms-uk_b_td

a **xylem** brand

SET OF 3 PUMPS HME..S SERIES SINGLE-PHASE POWER SUPPLY (SMB30.../M2)


SMB 30	DNA	DNM		Δ.	В		с	D	н	н	1	H2
			STD	AISI		STD	AISI			STD	AISI	
15HME01	DN100	DN80	374	434	366	910	917	590	205	651	704	720
15HME02	DN100	DN80	374	434	366	910	917	590	205	651	704	720

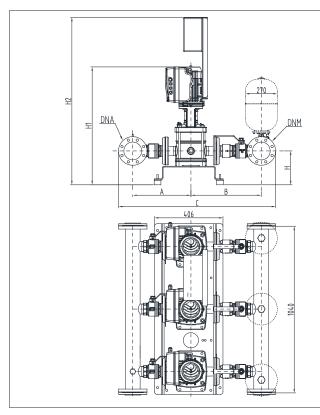

Dimensions in mm. ± 10 mm tolerance range.

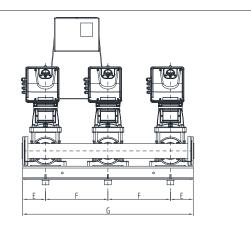
smb30_15hms_b_td

a **xylem** brand

SET OF 3 PUMPS SVE..F SERIES THREE-PHASE POWER SUPPLY (SMB30.../T3-T4)

ESM30-SV_A_DD


SMB 30	DNA	DNM	Α			В		с	н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
1SVE05F003	R2"	R2"	256	257	311	363	627	680	185	690	976
1SVE08F005	R2"	R2"	256	257	311	363	627	680	185	750	1036
1SVE11F007	R2"	R2"	256	257	311	363	627	680	185	810	1096
1SVE15F011	R2"	R2"	256	257	311	363	627	680	185	890	1176
3SVE03F003	R2"	R2"	256	257	311	363	627	680	185	650	936
3SVE05F005	R2"	R2"	256	257	311	363	627	680	185	690	976
3SVE07F007	R2"	R2"	256	257	311	363	627	680	185	730	1016
3SVE09F011	R2"	R2"	256	257	311	363	627	680	185	770	1056
3SVE11F015	R2"	R2"	256	257	311	363	627	680	185	810	1096
5SVE02F003	R2"	R2"	260	267	329	387	649	714	185	640	926
5SVE03F005	R2"	R2"	260	267	329	387	649	714	185	665	951
5SVE04F007	R2"	R2"	260	267	329	387	649	714	185	690	976
5SVE06F011	R2"	R2"	260	267	329	387	649	714	185	740	1026
5SVE08F015	R2"	R2"	260	267	329	387	649	714	185	790	1076
5SVE12F022	R2"	R2"	260	267	329	387	649	714	185	890	1176
10SVE01F005	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1005
10SVE02F007	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1005
10SVE02F011	R2"1/2	R2"1/2	294	301	356	453	726	830	190	719	1005
10SVE03F015	R2"1/2	R2"1/2	294	301	356	453	726	830	190	751	1037
10SVE04F022	R2"1/2	R2"1/2	294	301	356	453	726	830	190	783	1069

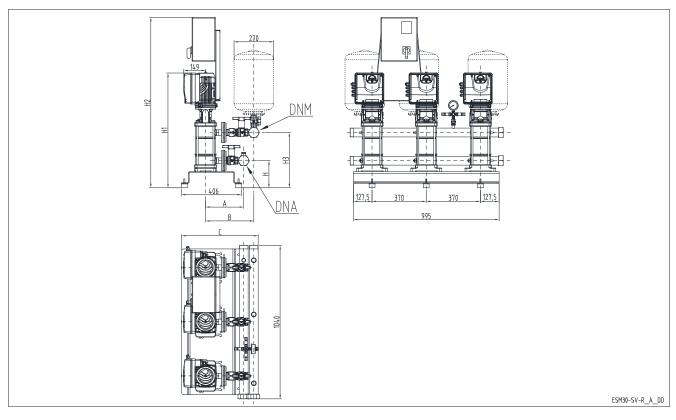

Dimensions in mm. \pm 10 mm tolerance range.

smb30-sv-f-tri_a_td

a **xylem** brand

SET OF 3 PUMPS SVE..F SERIES THREE-PHASE POWER SUPPLY (SMB30.../T3-T4)

ESM30-15SV_A_DD

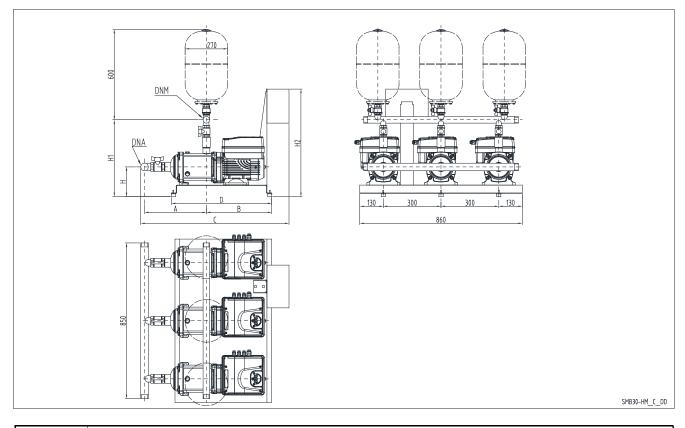

SMB 30	DNA	DNM		4	В		С		н	H1	H2
			STD	AISI	STD	AISI	STD	AISI			
15SVE01F007	100	80	357	363	418	408	984	981	200	771	1057
15SVE01F011	100	80	357	363	418	408	984	981	200	771	1057
15SVE02F015	100	80	357	363	418	408	984	981	200	771	1057
15SVE02F022	100	80	357	363	418	408	984	981	200	771	1057
22SVE01F007	100	80	357	363	418	408	984	981	200	771	1057
22SVE01F011	100	80	357	363	418	408	984	981	200	771	1057
22SVE02F015	100	80	357	363	418	408	984	981	200	771	1057
22SVE02F022	100	80	357	363	418	408	984	981	200	771	1057
Dimensions in mm	+ 10 mm tole	ance range								cmb30_1	sv trif a te

Dimensions in mm. ± 10 mm tolerance range.

smb30-15sv-tri-f_a_td

a **xylem** brand

SET OF 3 PUMPS SVE..R SERIES THREE-PHASE POWER SUPPLY (SMB30.../T3-T4)

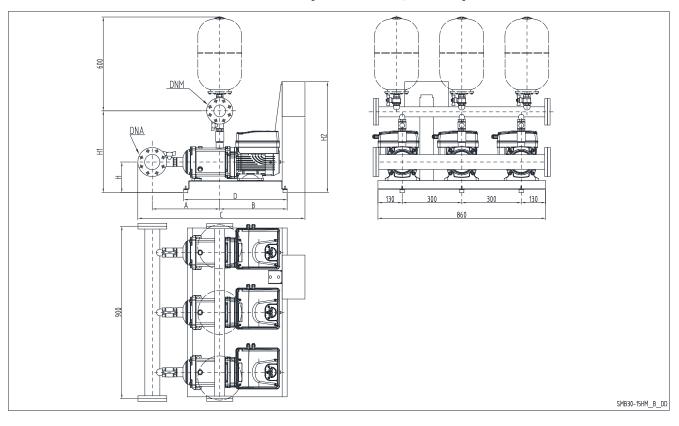


SMB 30	DNA	DNM	Α		В		с		н	H1	H2	H3
			STD	AISI	STD	AISI	STD	AISI				
1SVE08R005	R2"	R2"	256	257	311	363	490	542	185	750	1036	337
1SVE11R007	R2"	R2"	256	257	311	363	490	542	185	810	1096	397
1SVE15R011	R2"	R2"	256	257	311	363	490	542	185	890	1176	477
3SVE07R007	R2"	R2"	256	257	311	363	490	542	185	730	1016	317
3SVE09R011	R2"	R2"	256	257	311	363	490	542	185	770	1056	357
3SVE11R015	R2"	R2"	256	257	311	363	490	542	185	810	1096	377
5SVE08R015	R2"	R2"	260	267	329	387	508	566	185	790	1076	377
5SVE12R022	R2"	R2"	260	267	329	387	508	566	185	890	1176	377

smb30-sv-r-tri_a_

a **xylem** brand

SET OF 3 PUMPS HME..S SERIES THREE-PHASE POWER SUPPLY (SMB30.../T3-T4)


		1	1		1	1		1	1	1		I
SMB 30	DNA	DNM	1	4	В	C		D	н	H	1	H2
			STD	AISI		STD	AISI			STD	AISI	
1HME05	R 2"	R 2"	264	308	340	742	786	590	205	408	446	850
1HME08	R 2"	R 2"	308	352	349	795	839	590	205	490	528	850
1HME11	R 2"	R 2"	368	412	349	855	899	590	205	490	528	850
1HME15	R 2"	R 2"	448	492	349	935	979	762	205	490	528	850
1HME17	R 2"	R 2"	488	532	349	975	1019	762	205	490	528	850
3HME03	R 2"	R 2"	224	268	340	702	746	590	205	408	446	850
3HME05	R 2"	R 2"	264	308	340	742	786	590	205	408	446	850
3HME07	R 2"	R 2"	288	332	349	775	819	590	205	490	528	850
3HME09	R 2"	R 2"	328	372	349	815	859	590	205	490	528	850
3HME12	R 2"	R 2"	388	432	349	875	919	590	205	490	528	850
3HME14	R 2"	R 2"	428	472	349	915	959	590	205	490	528	850
5HME02	R 2"	R 2"	260	320	340	738	798	590	205	469	543	850
5HME03	R 2"	R 2"	260	320	340	738	798	590	205	469	543	850
5HME04	R 2"	R 2"	285	345	340	763	823	590	205	469	543	850
5HME06	R 2"	R 2"	314	374	349	801	861	590	205	551	625	850
5HME08	R 2"	R 2"	364	424	349	851	911	590	205	551	625	850
5HME10	R 2"	R 2"	414	474	349	901	961	590	205	551	625	850
10HME01	R 2"1/2	R 2"1/2	301	361	350	797	857	590	205	611	709	850
10HME02	R 2"1/2	R 2"1/2	301	361	350	797	857	590	205	611	709	850
10HME03	R 2"1/2	R 2"1/2	301	361	350	797	857	590	205	611	709	850
10HME04	R 2"1/2	R 2"1/2	333	393	350	829	889	590	205	611	709	850

Dimensions in mm. ± 10 mm tolerance range.

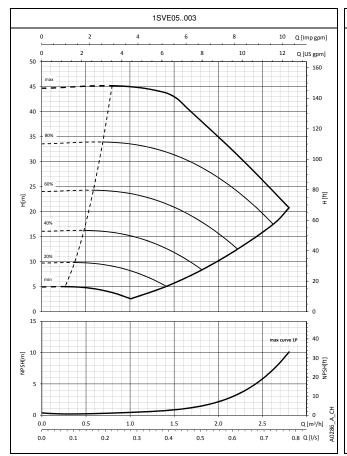
smb30_10hms-tri-uk_a_td

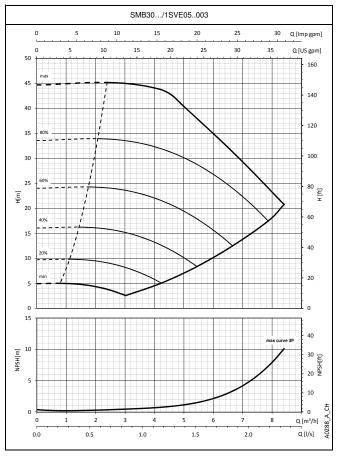
a **xylem** brand

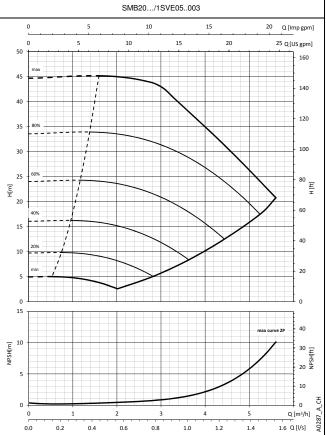
SET OF 3 PUMPS HME..S SERIES THREE-PHASE POWER SUPPLY (SMB30.../T3-T4)

SMB 30	DNA	DNM	Α		В	с		D	н	н	1	H2
			STD	AISI		STD	AISI			STD	AISI	
15HME01	DN100	DN80	374	434	366	936	1008	590	205	651	704	850
15HME02	DN100	DN80	374	434	366	936	1008	590	205	651	704	850
15HME03	DN100	DN80	374	434	366	936	1008	590	205	651	704	850

Dimensions in mm. ± 10 mm tolerance range.

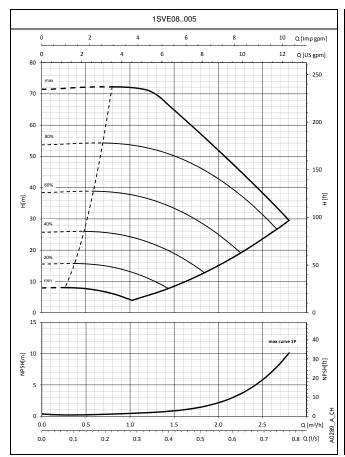

smb30_15hms-tri-uk_a_td

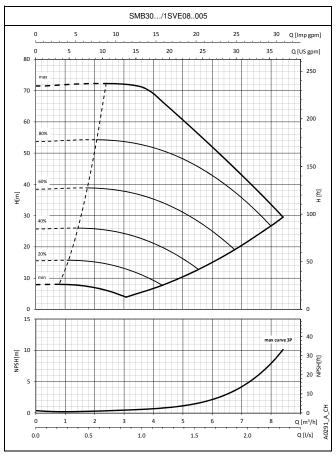


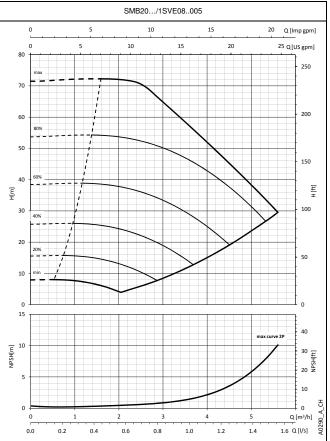


PERFORMANCE CURVES

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

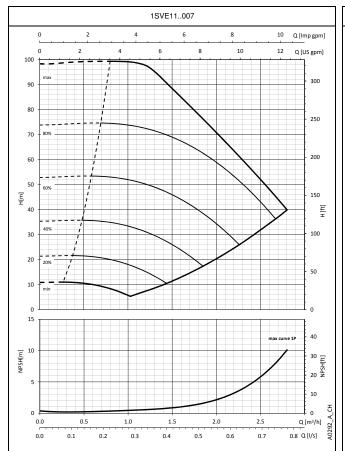

The performance curves do not take into account flow resistance in the valves and piping.

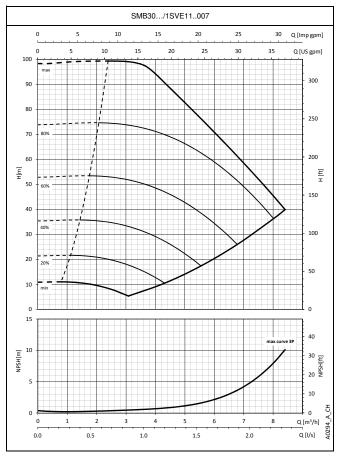

The curves show the performance with one, two and three pumps running.

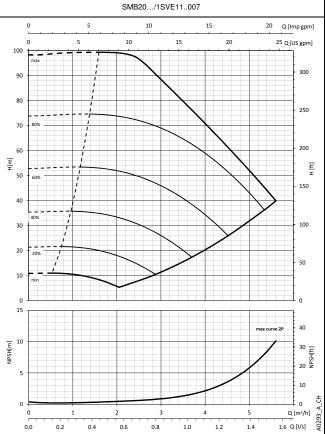

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

The declared NPSH values are laboratory values; for practical use we recommend increasing these values by 0.5 m.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

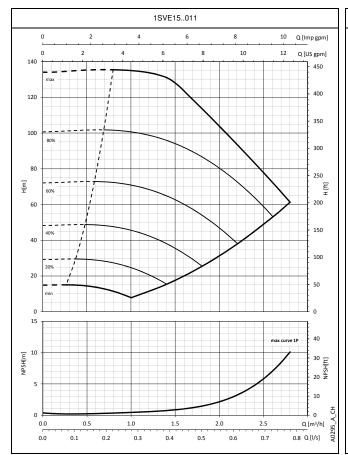


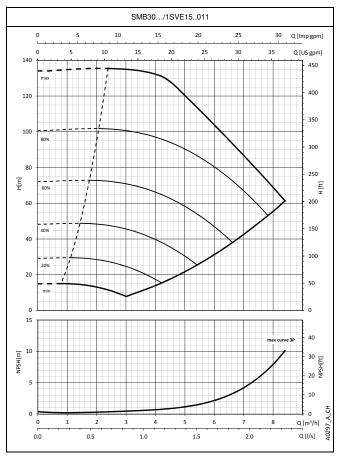

The performance curves do not take into account flow resistance in the valves and piping.

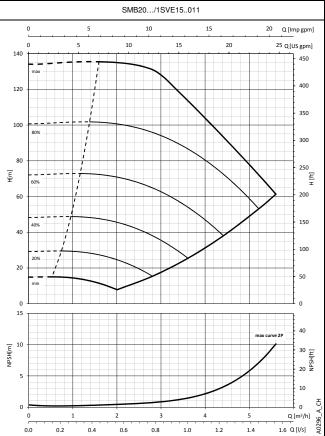

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

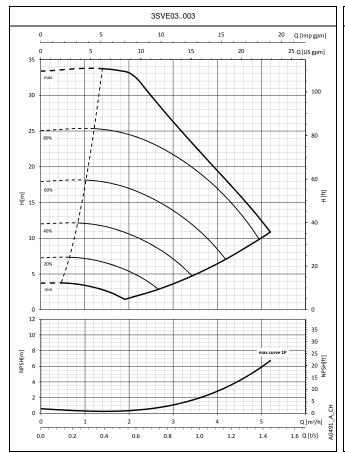


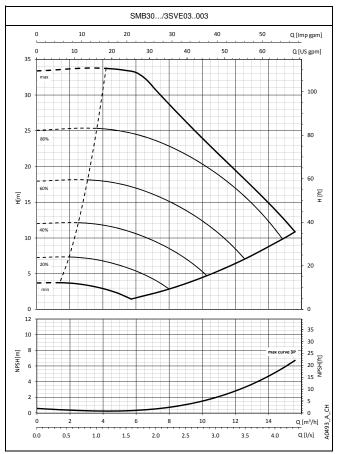

The performance curves do not take into account flow resistance in the valves and piping.

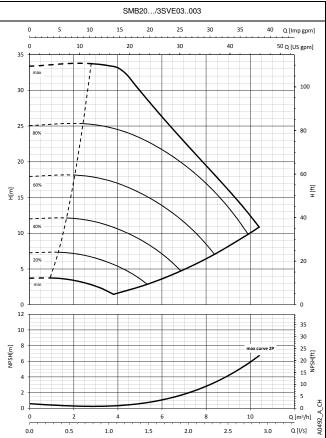

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

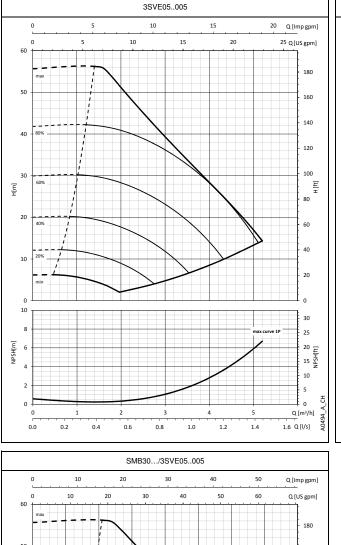


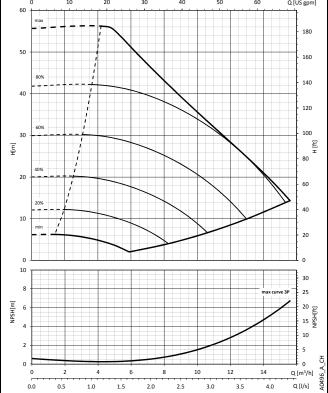

The performance curves do not take into account flow resistance in the valves and piping.

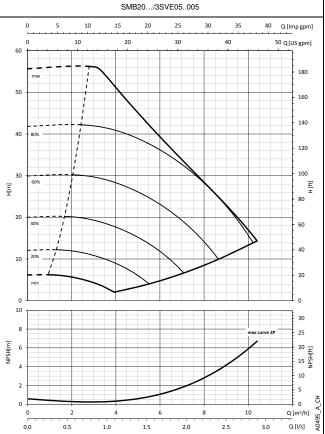

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

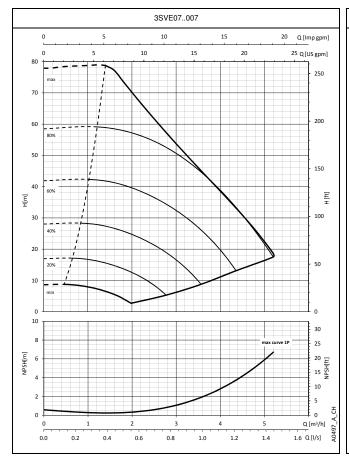


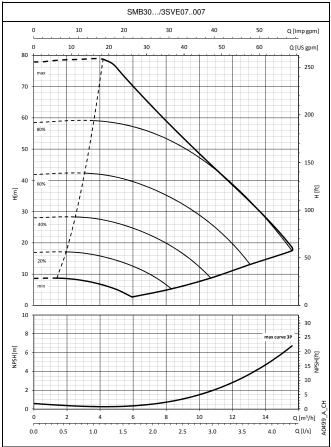

The performance curves do not take into account flow resistance in the valves and piping.

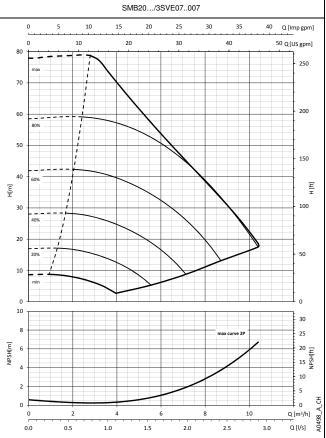

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

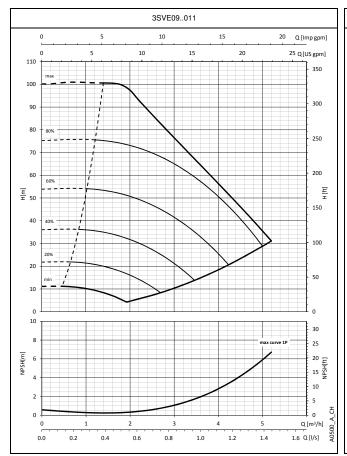


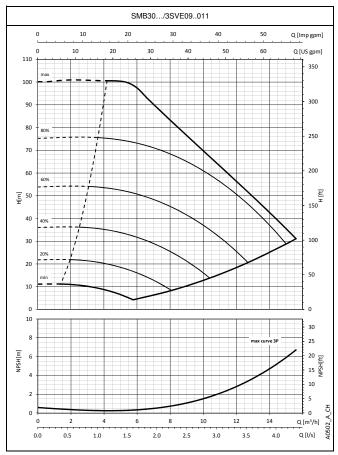

The performance curves do not take into account flow resistance in the valves and piping.

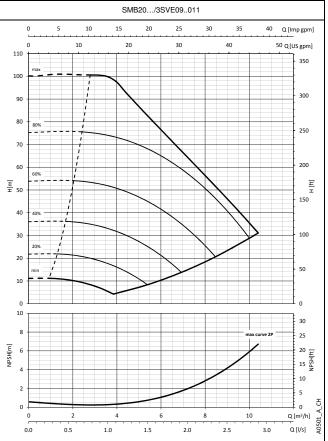

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

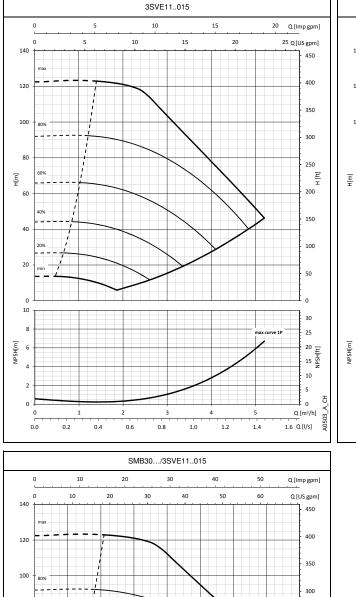


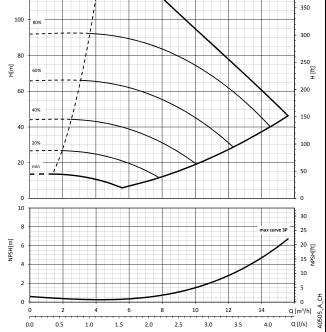

The performance curves do not take into account flow resistance in the valves and piping.

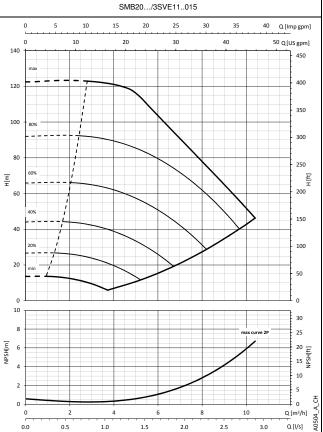

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

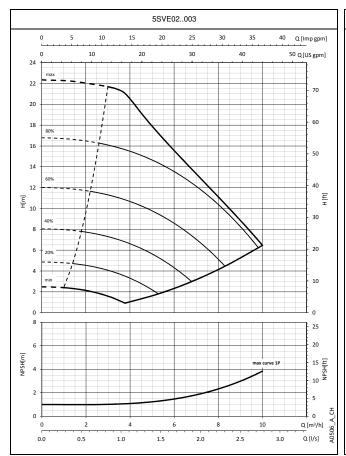


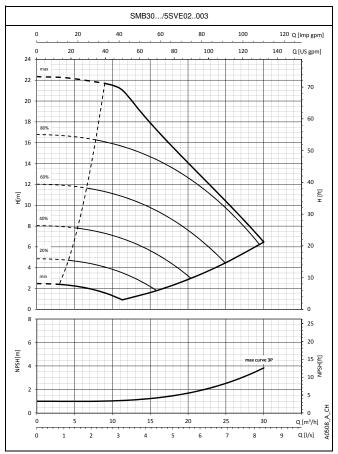

The performance curves do not take into account flow resistance in the valves and piping.

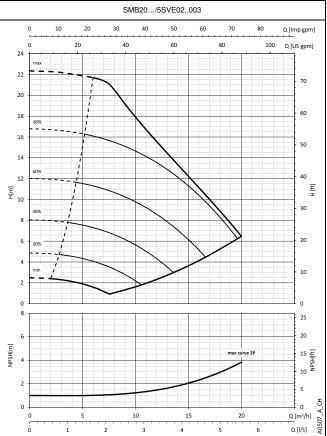

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

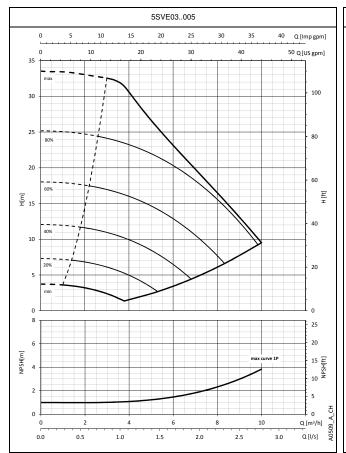


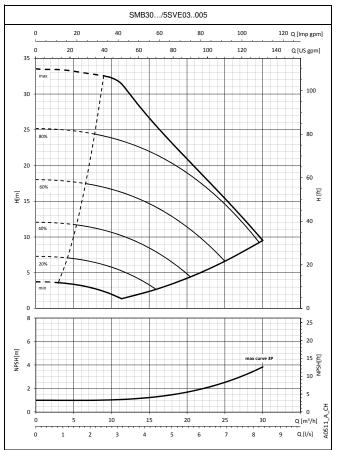

The performance curves do not take into account flow resistance in the valves and piping.

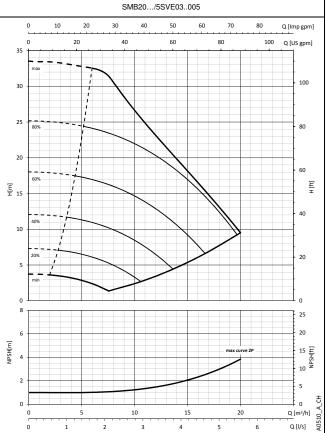

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

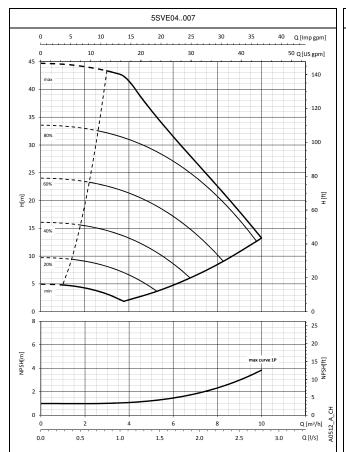


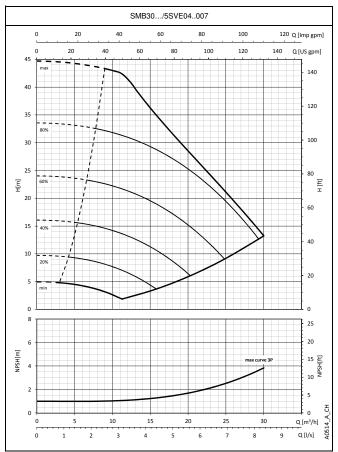

The performance curves do not take into account flow resistance in the valves and piping.

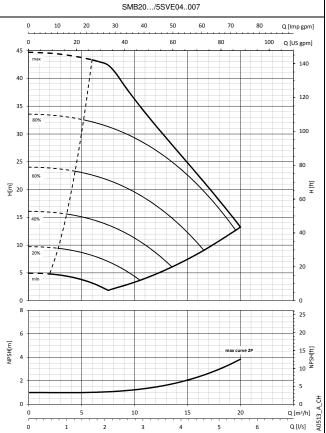

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

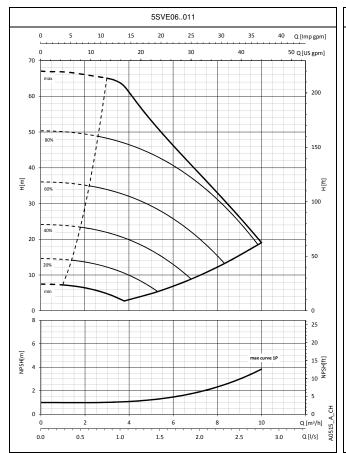


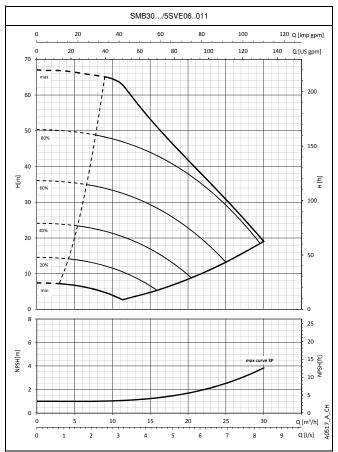

The performance curves do not take into account flow resistance in the valves and piping.

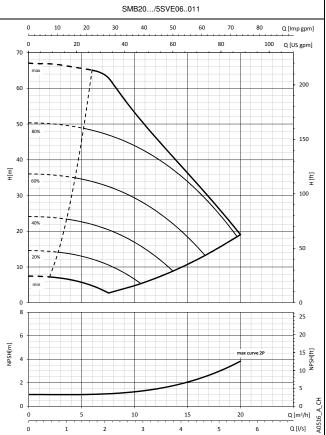

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

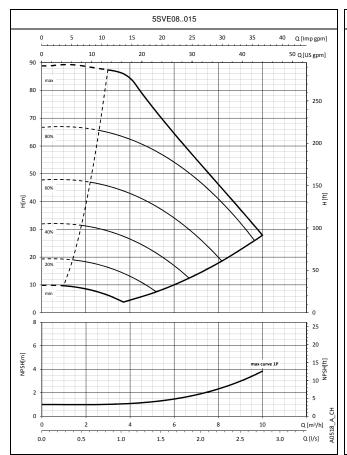


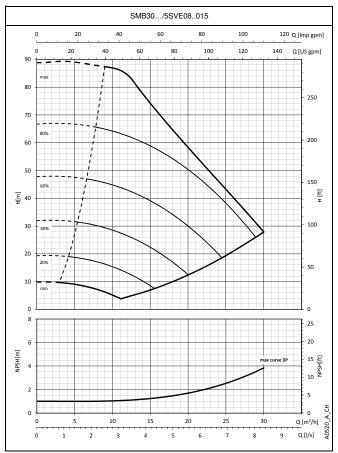

The performance curves do not take into account flow resistance in the valves and piping.

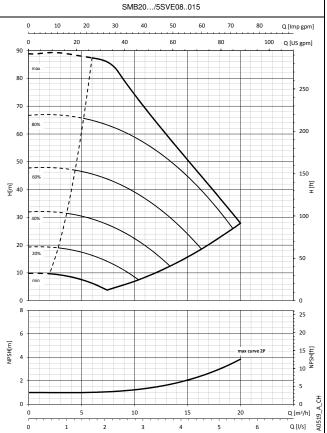

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

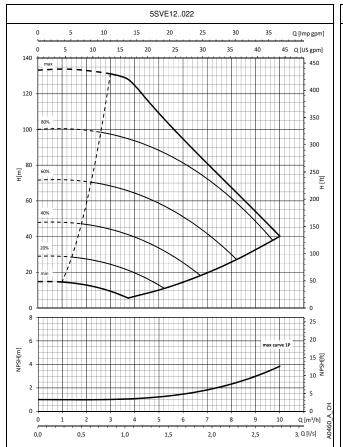


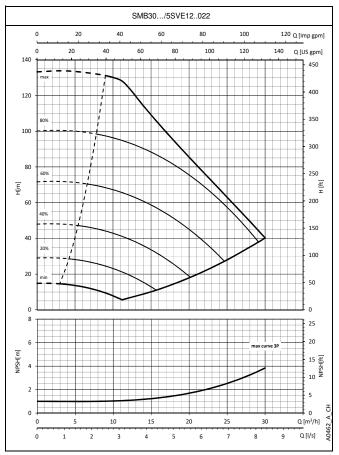

The performance curves do not take into account flow resistance in the valves and piping.

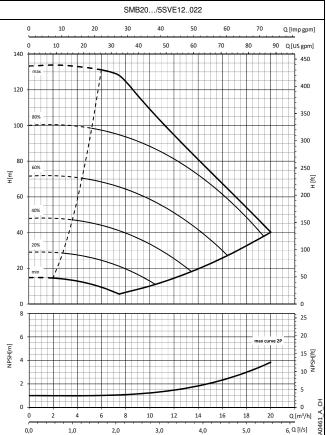

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

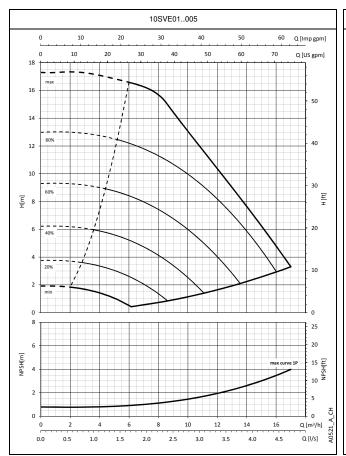


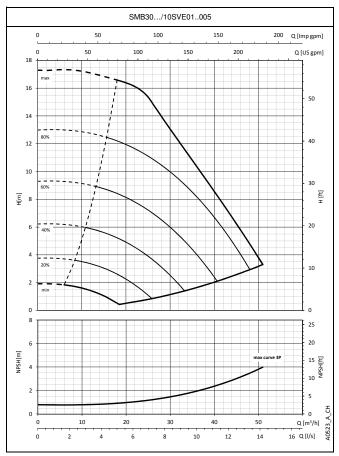

The performance curves do not take into account flow resistance in the valves and piping.

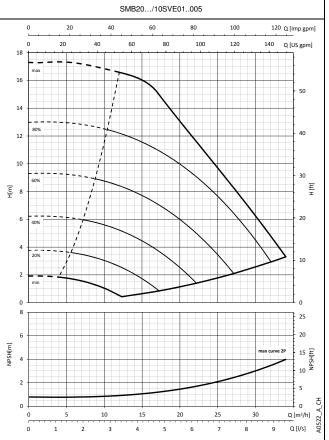

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

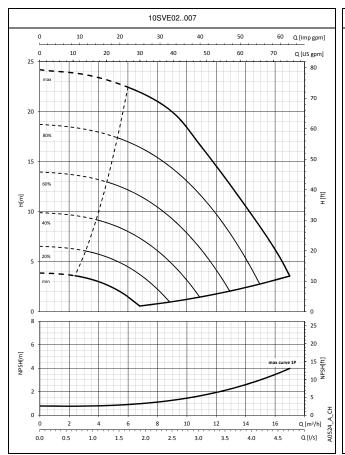


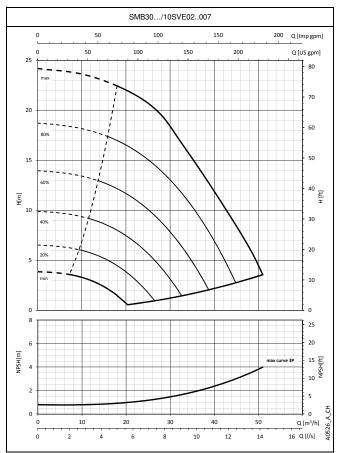

The performance curves do not take into account flow resistance in the valves and piping.

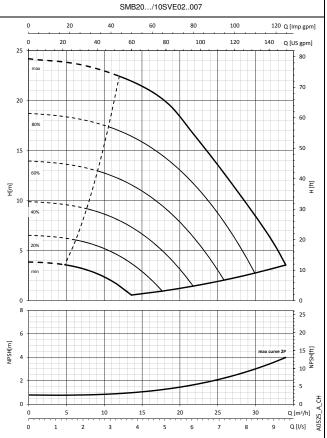

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

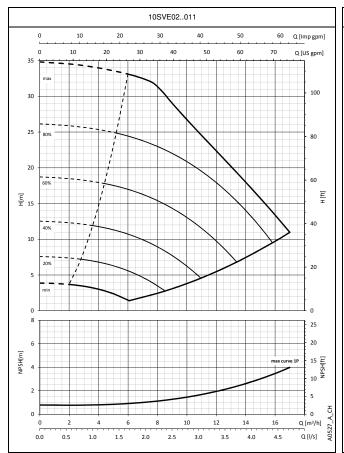


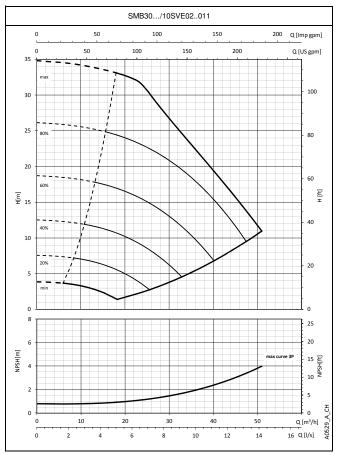

The performance curves do not take into account flow resistance in the valves and piping.

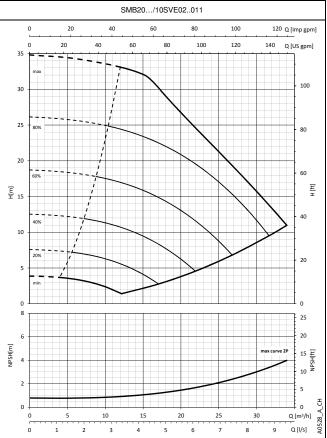

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

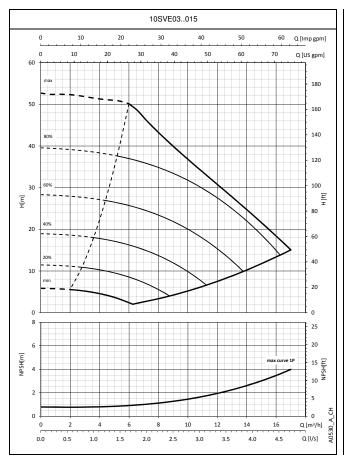


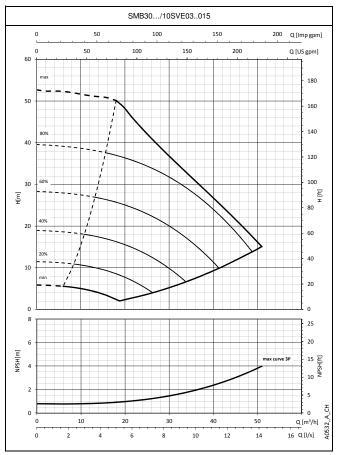

The performance curves do not take into account flow resistance in the valves and piping.

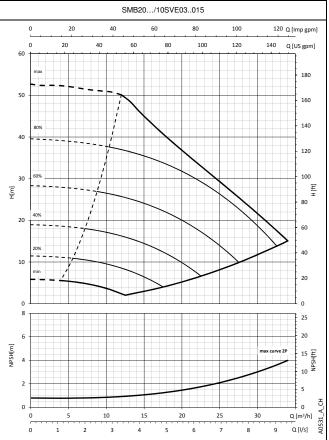

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

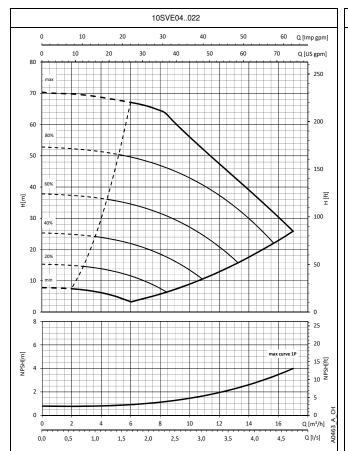


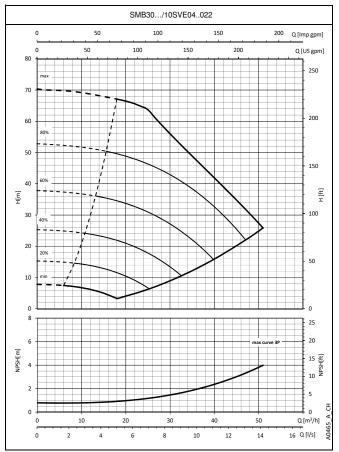

The performance curves do not take into account flow resistance in the valves and piping.

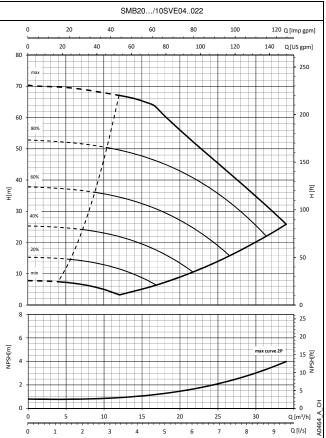

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

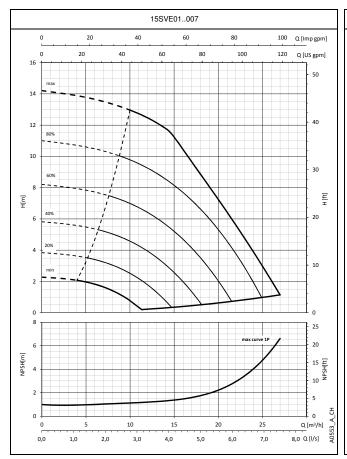


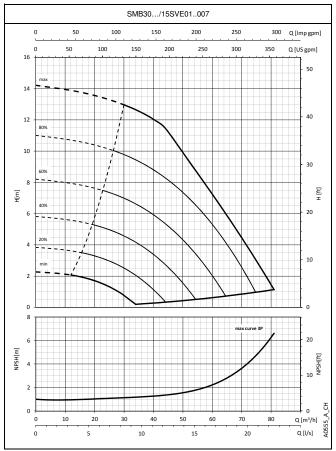

The performance curves do not take into account flow resistance in the valves and piping.

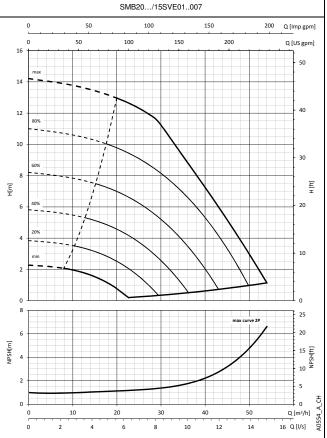

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

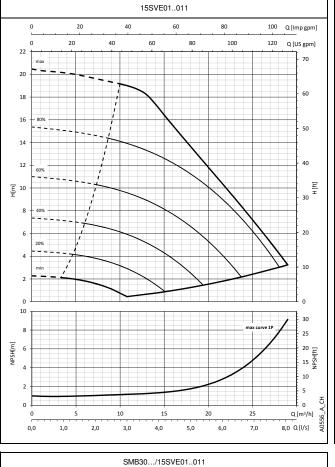


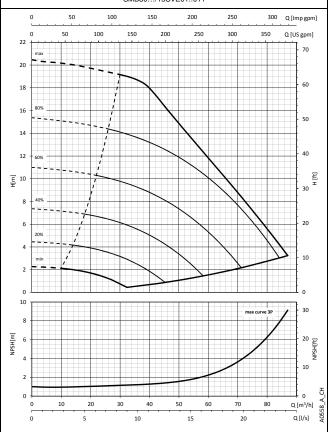

The performance curves do not take into account flow resistance in the valves and piping.

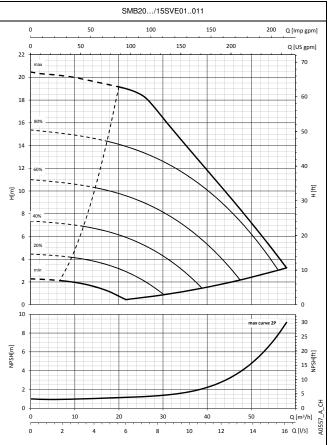

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

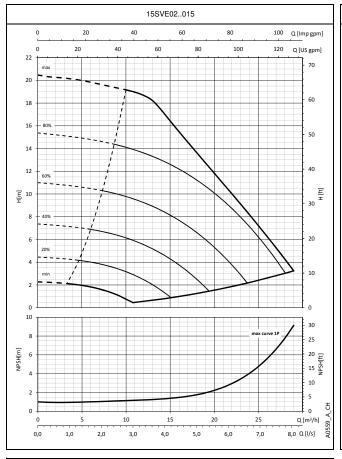


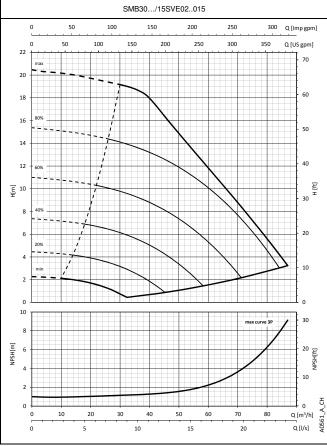

The performance curves do not take into account flow resistance in the valves and piping.

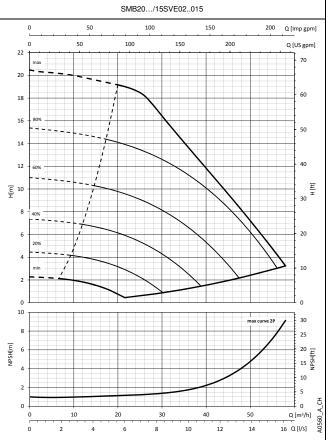

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS



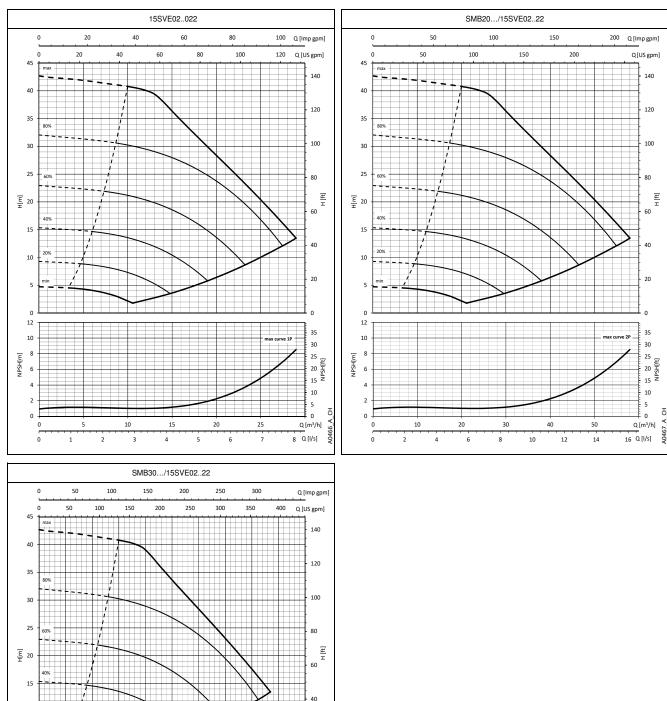

The performance curves do not take into account flow resistance in the valves and piping.


The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

The performance curves do not take into account flow resistance in the valves and piping.


The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

(LOWARA a xylem brand

SMB.../SVE BOOSTER SETS SERIES **OPERATING CHARACTERISTICS**

NPSH[m]

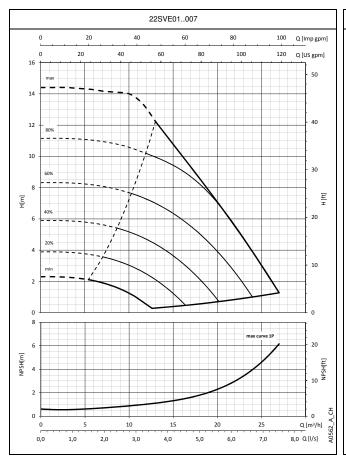
The performance curves do not take into account flow resistance in the valves and piping.

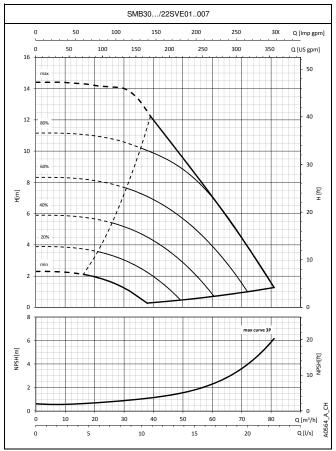
The curves show the performance with one, two and three pumps running.

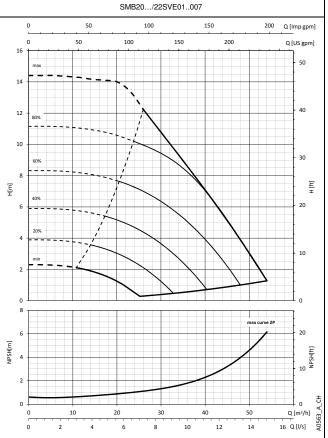
These performances are valid for liquids with density $\rho = 1$ Kg/dm³ and kinematic viscosity $v = 1 \text{ mm}^2/\text{sec.}$

The declared NPSH values are laboratory values; for practical use we recommend increasing these values by 0,5 m.

n

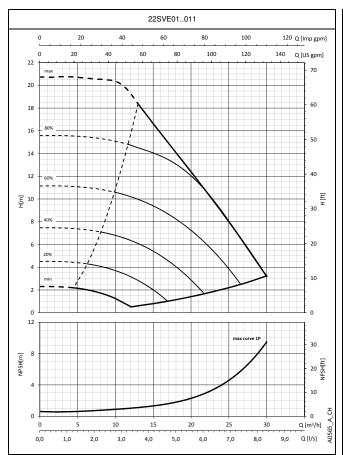

Q [m3/h]

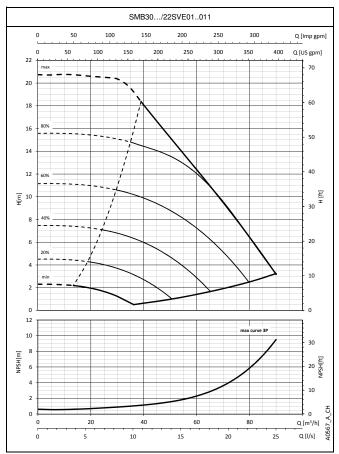

Q [I/s]

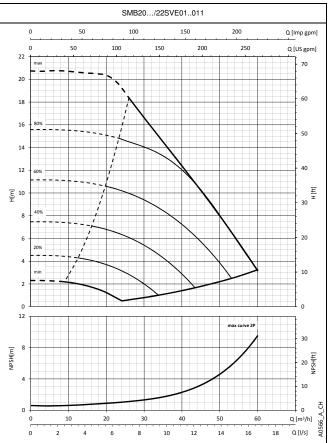

£

max curve 3P

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

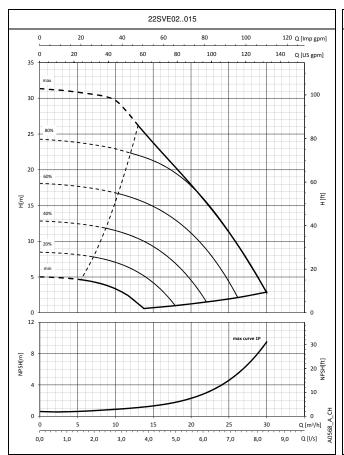


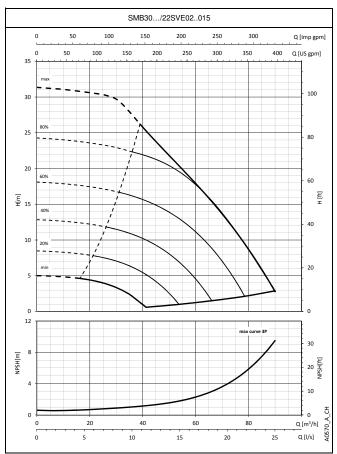

The performance curves do not take into account flow resistance in the valves and piping.

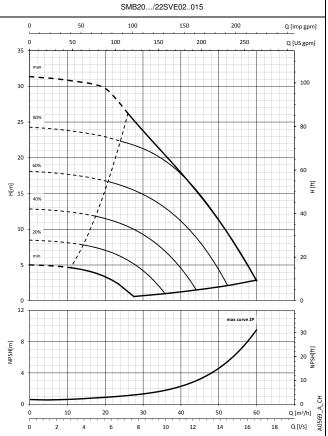

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

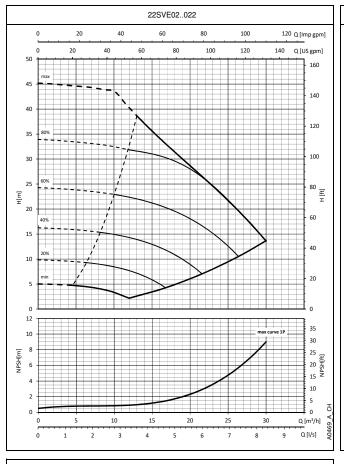


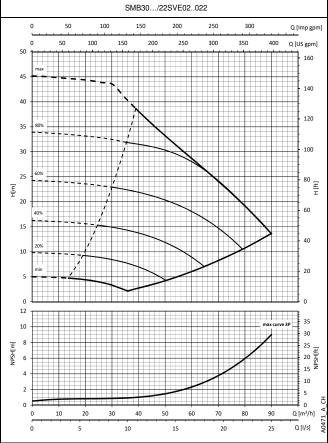

The performance curves do not take into account flow resistance in the valves and piping.

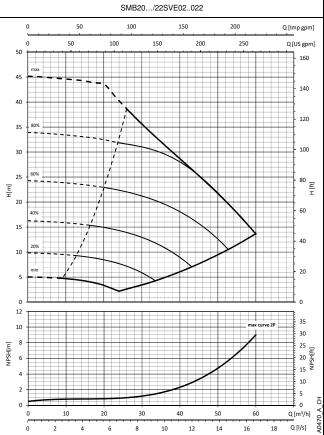

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

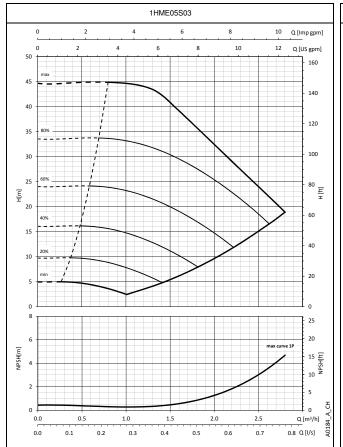


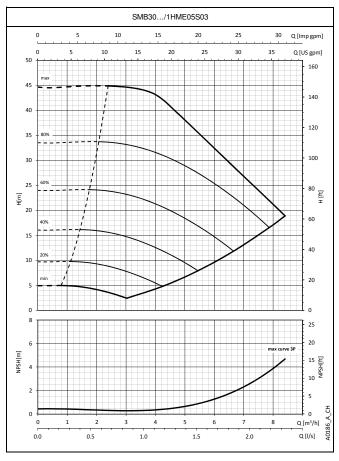

The performance curves do not take into account flow resistance in the valves and piping.

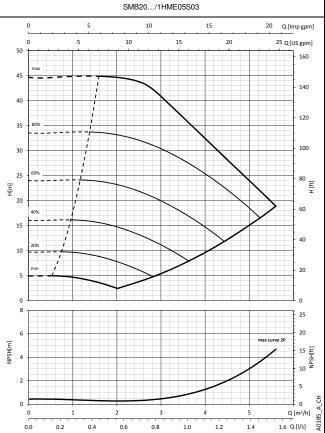

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../SVE BOOSTER SETS SERIES OPERATING CHARACTERISTICS

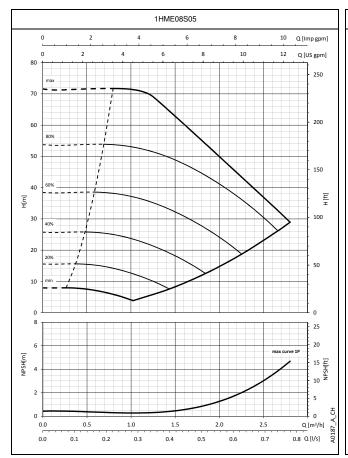


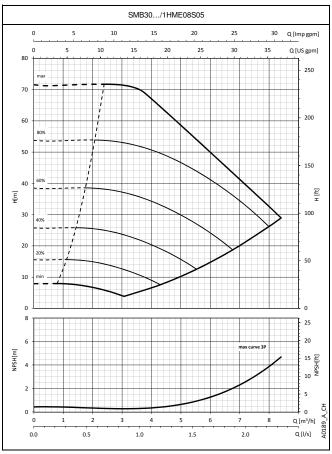

The performance curves do not take into account flow resistance in the valves and piping.

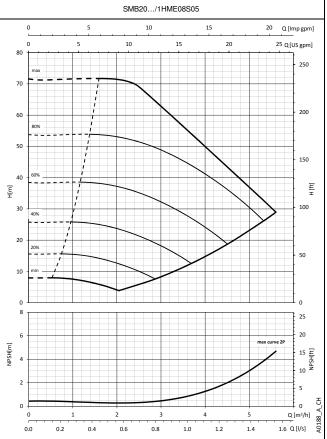

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

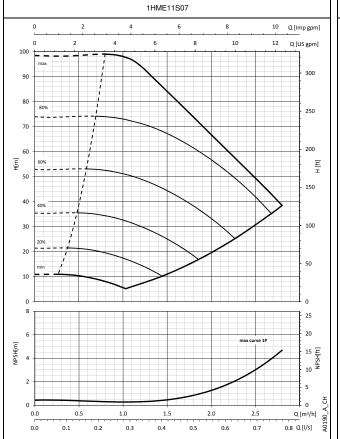


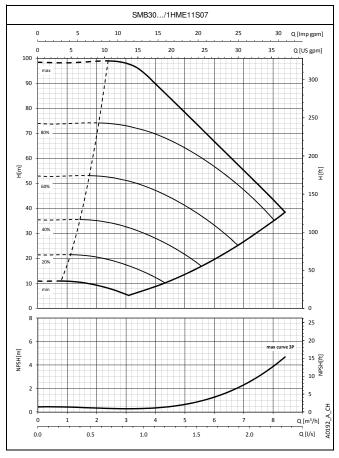

The performance curves do not take into account flow resistance in the valves and piping.

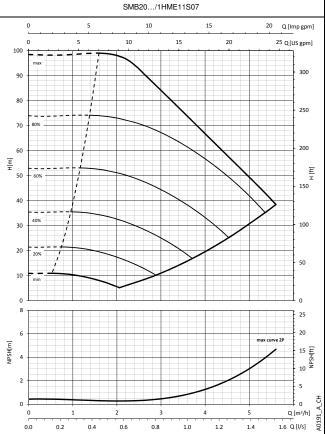

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

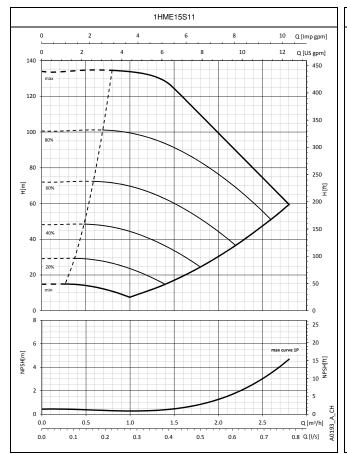


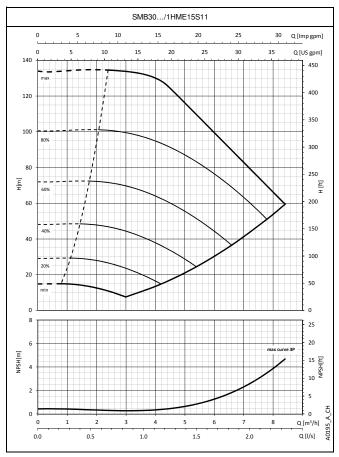

The performance curves do not take into account flow resistance in the valves and piping.

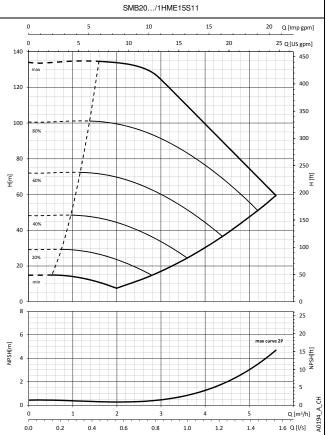

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

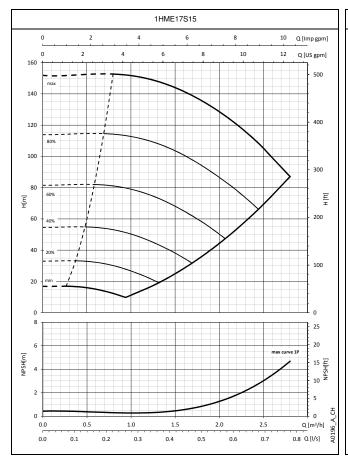


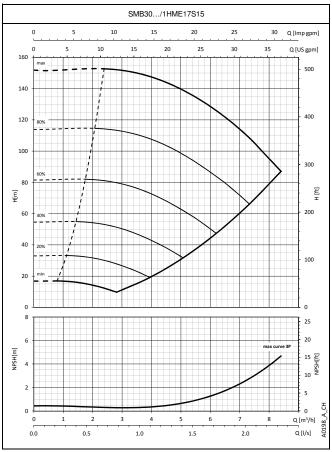

The performance curves do not take into account flow resistance in the valves and piping.

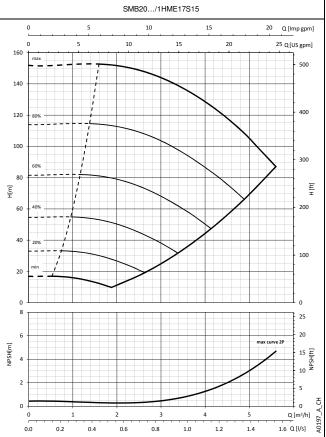

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

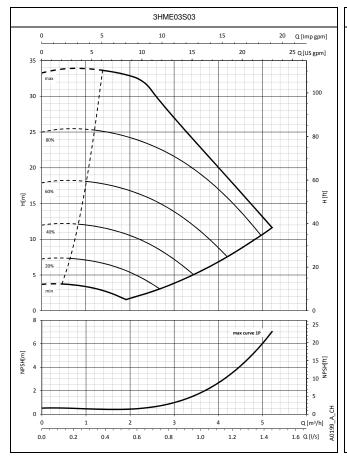


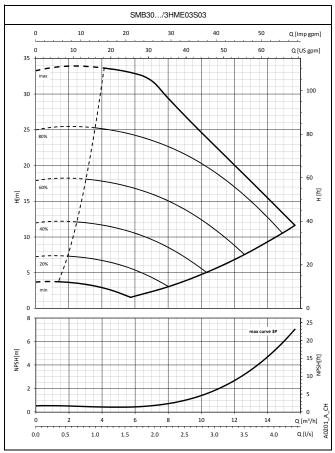

The performance curves do not take into account flow resistance in the valves and piping.

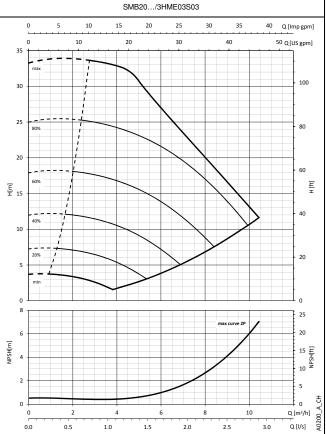

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

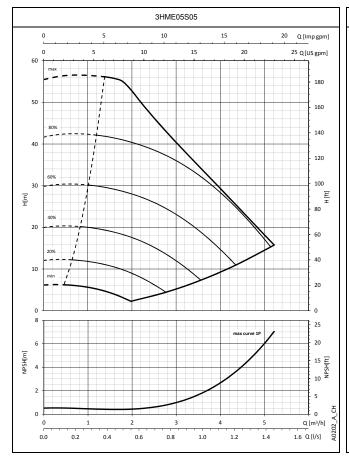


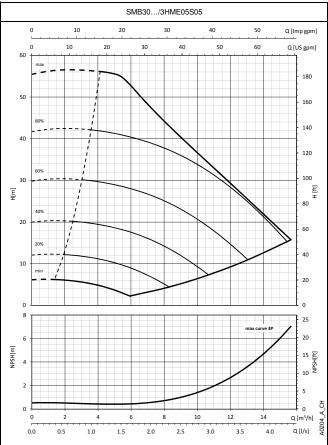

The performance curves do not take into account flow resistance in the valves and piping.

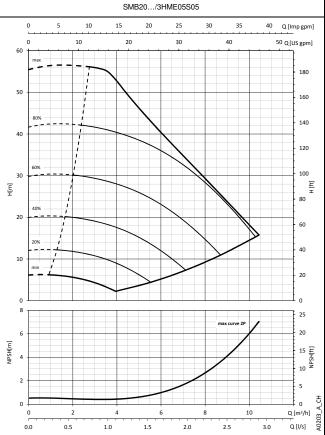

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

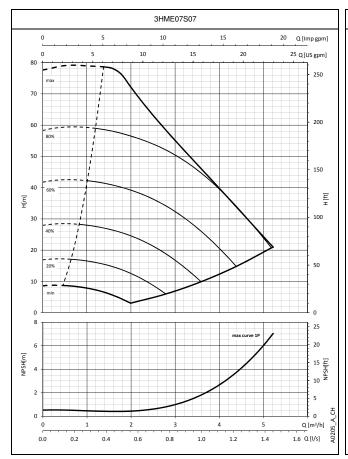


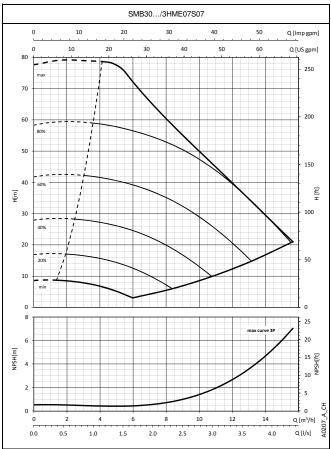

The performance curves do not take into account flow resistance in the valves and piping.

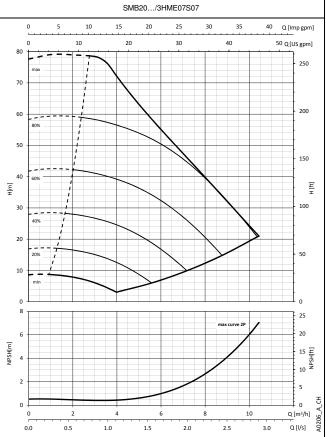

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

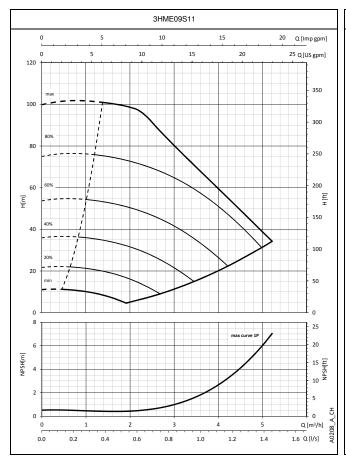


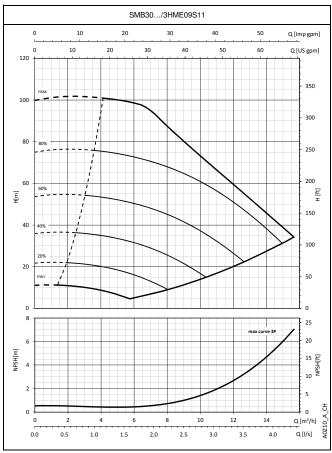

The performance curves do not take into account flow resistance in the valves and piping.

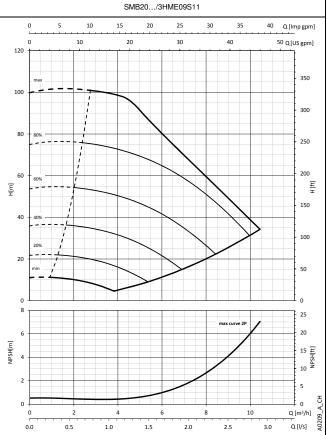

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

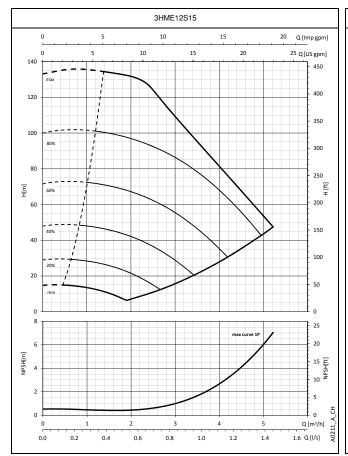


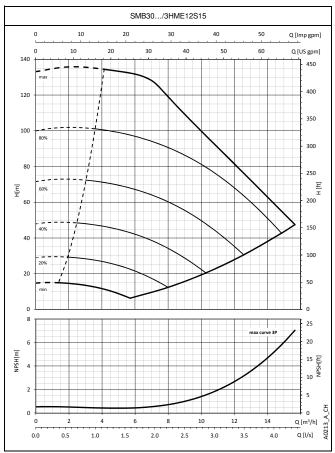

The performance curves do not take into account flow resistance in the valves and piping.

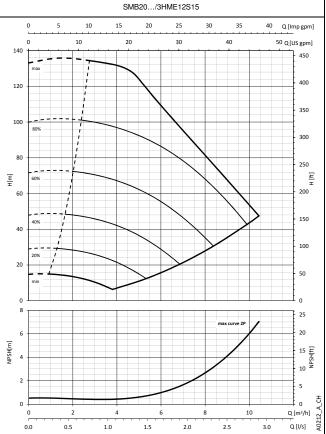

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

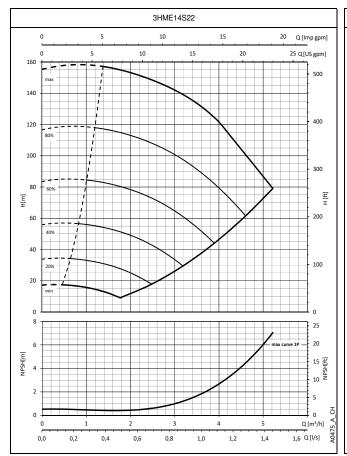


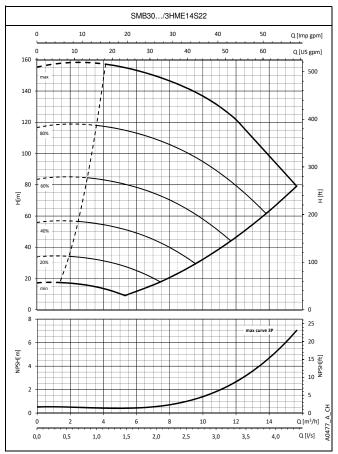

The performance curves do not take into account flow resistance in the valves and piping.

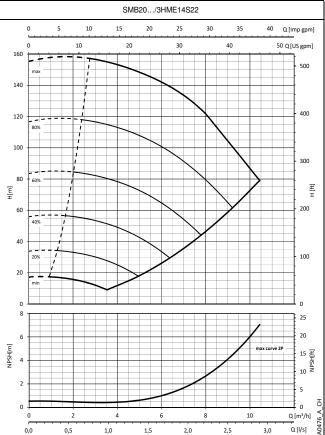

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

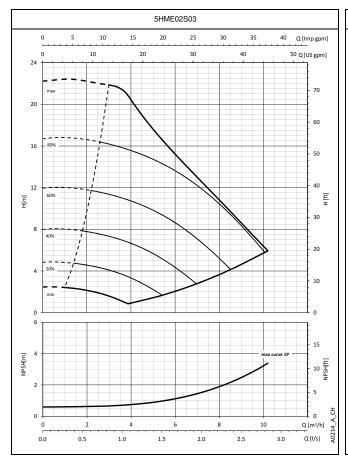


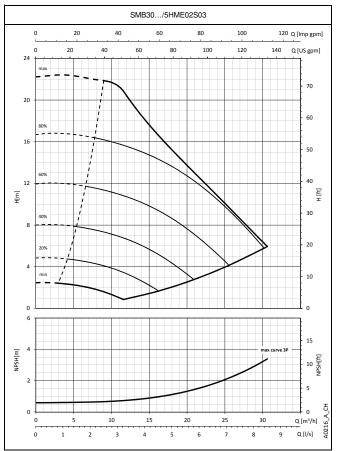

The performance curves do not take into account flow resistance in the valves and piping.

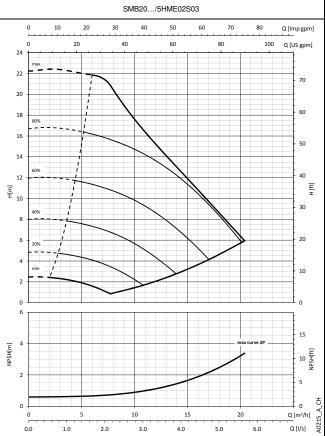

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

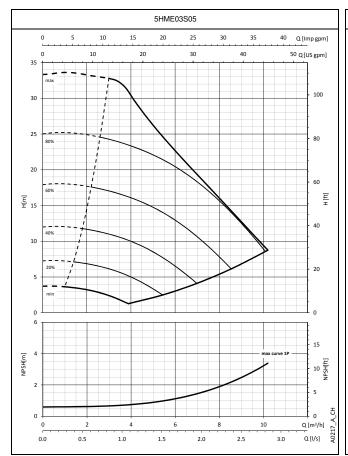


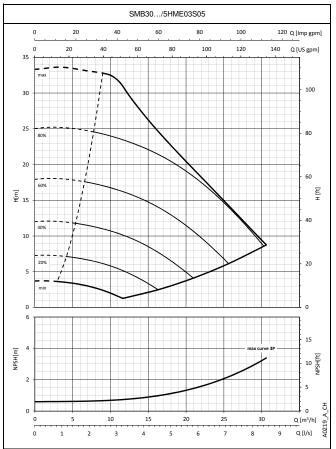

The performance curves do not take into account flow resistance in the valves and piping.

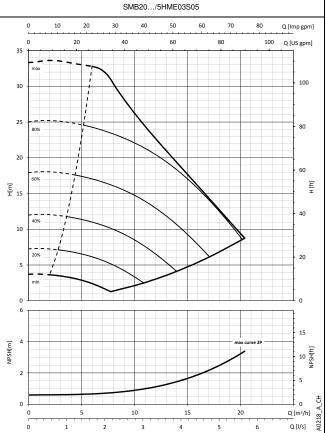

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

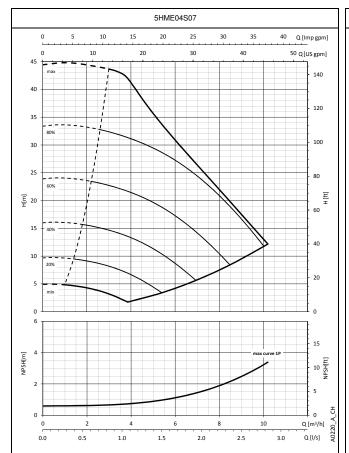


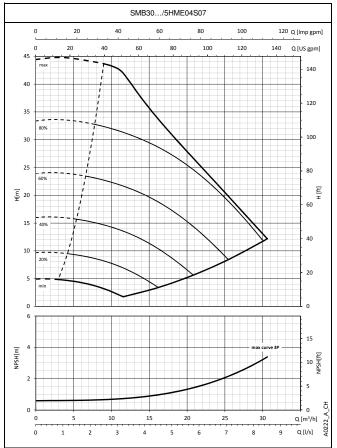

The performance curves do not take into account flow resistance in the valves and piping.

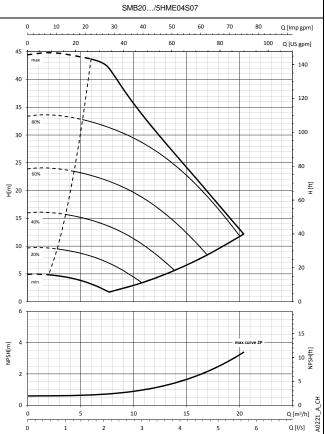

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

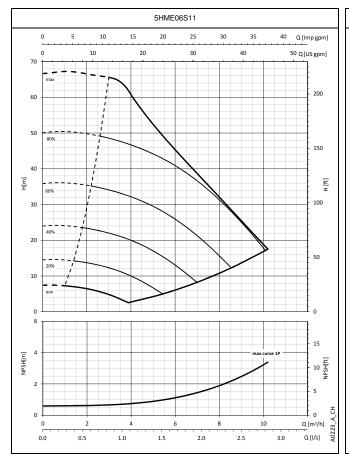


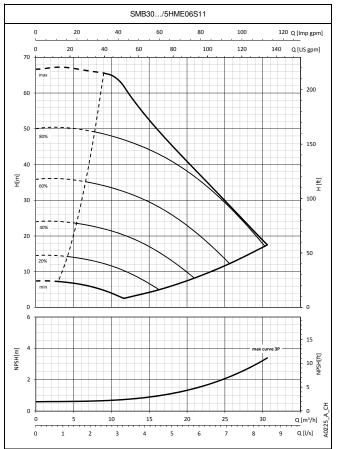

The performance curves do not take into account flow resistance in the valves and piping.

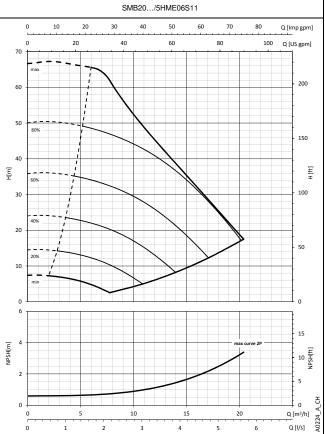

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

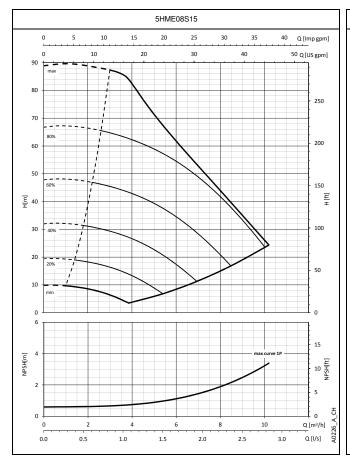


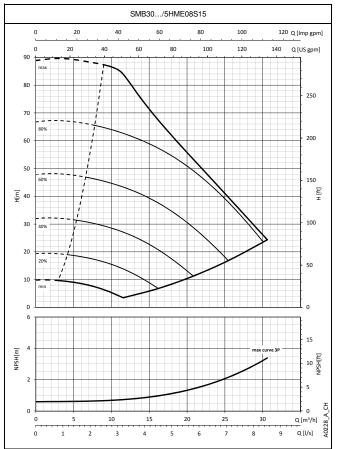

The performance curves do not take into account flow resistance in the valves and piping.

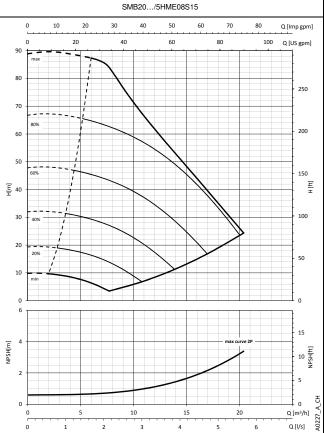

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

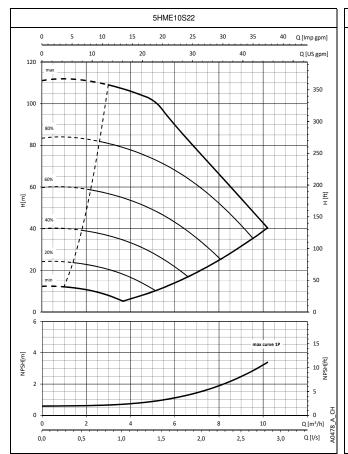


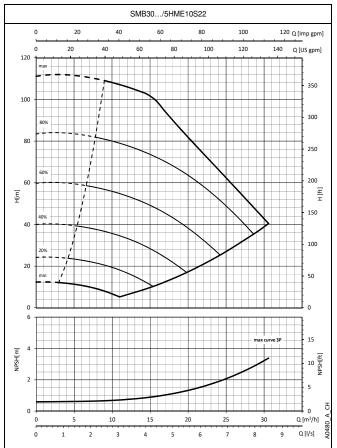

The performance curves do not take into account flow resistance in the valves and piping.

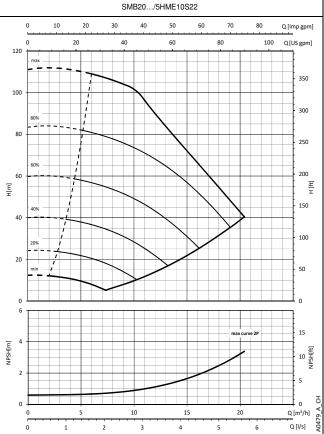

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

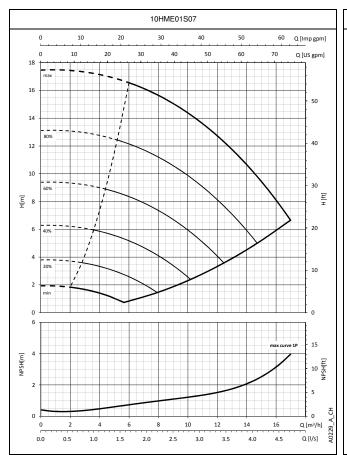


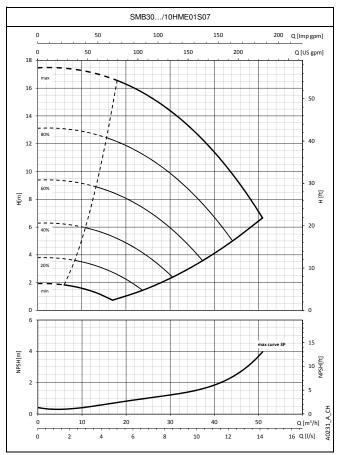

The performance curves do not take into account flow resistance in the valves and piping.

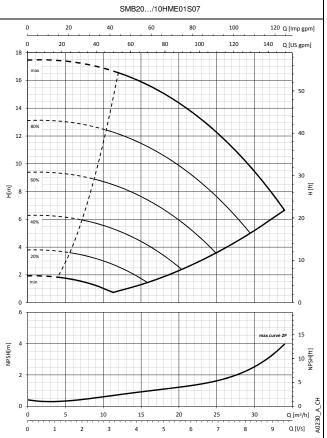

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

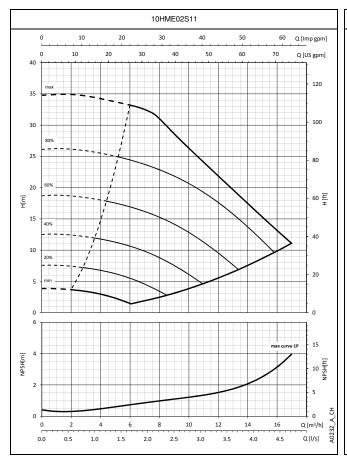


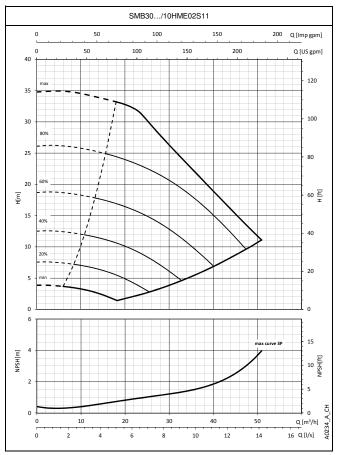

The performance curves do not take into account flow resistance in the valves and piping.

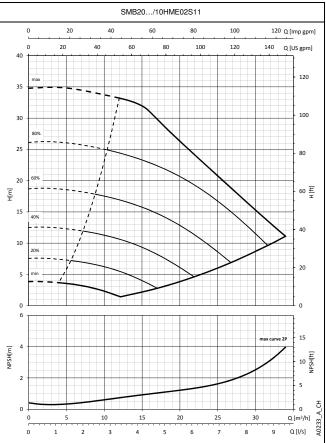

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

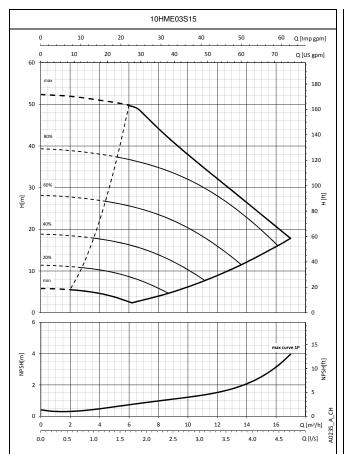


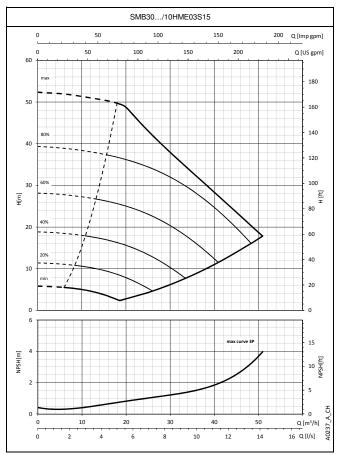

The performance curves do not take into account flow resistance in the valves and piping.

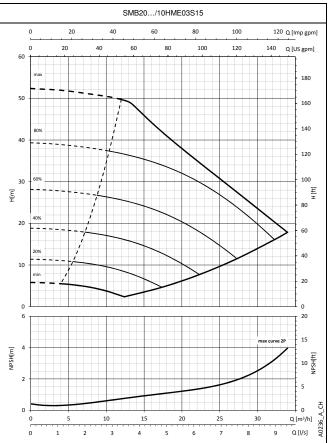

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

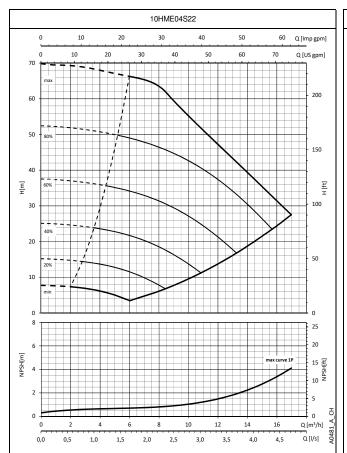


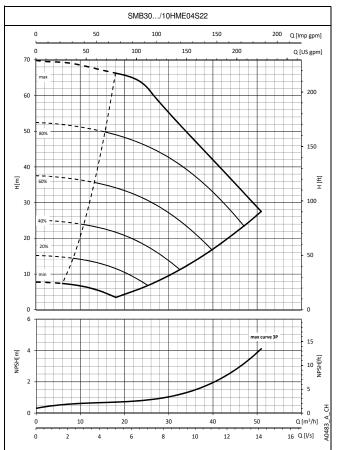

The performance curves do not take into account flow resistance in the valves and piping.

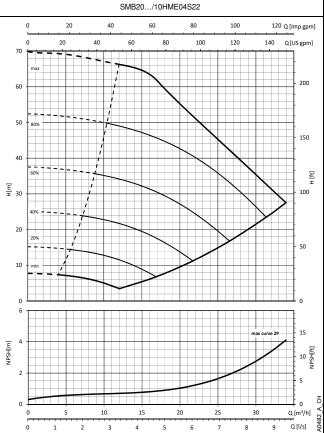

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

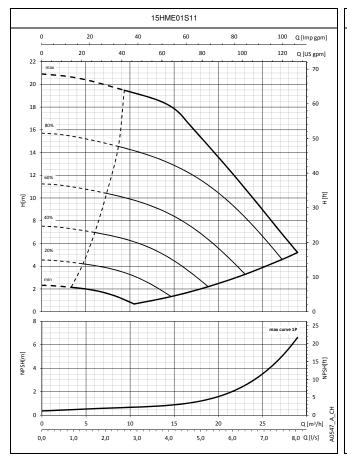


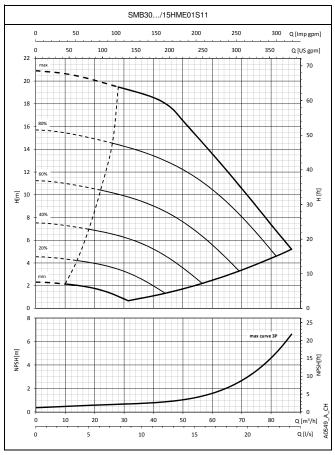

The performance curves do not take into account flow resistance in the valves and piping.


The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

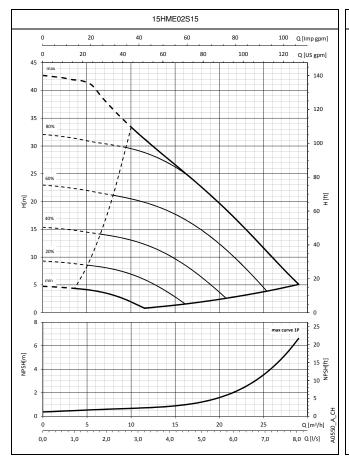


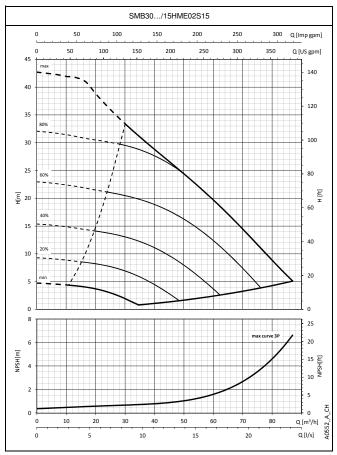

The performance curves do not take into account flow resistance in the valves and piping.

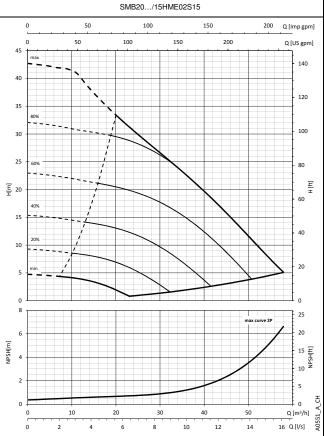

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

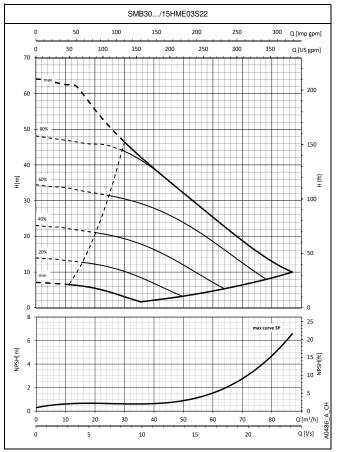


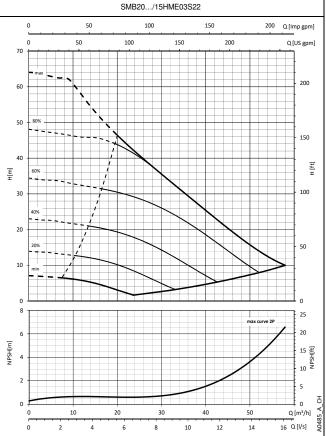

The performance curves do not take into account flow resistance in the valves and piping.


The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

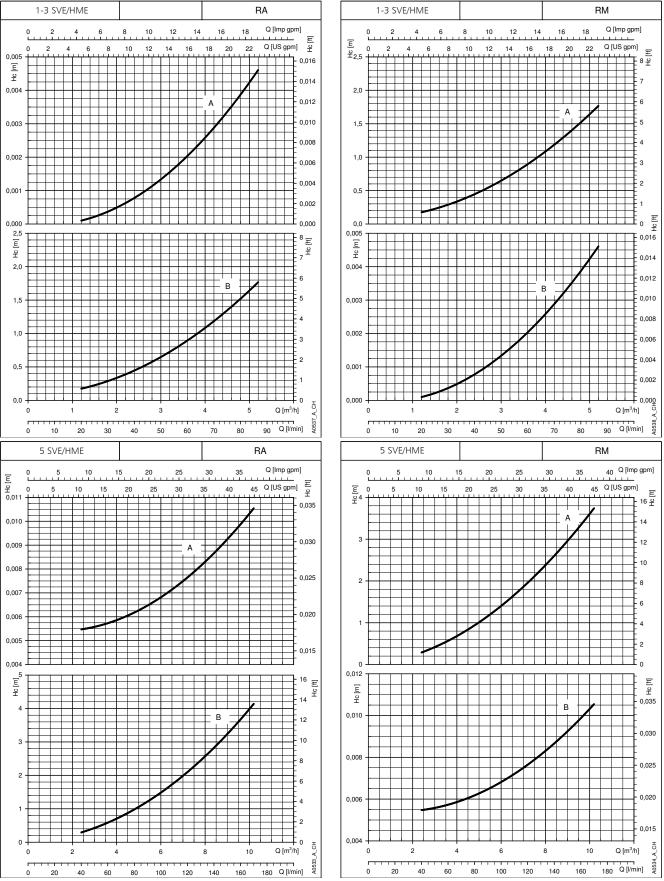
SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS


The performance curves do not take into account flow resistance in the valves and piping.


The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

SMB.../HME BOOSTER SETS SERIES OPERATING CHARACTERISTICS

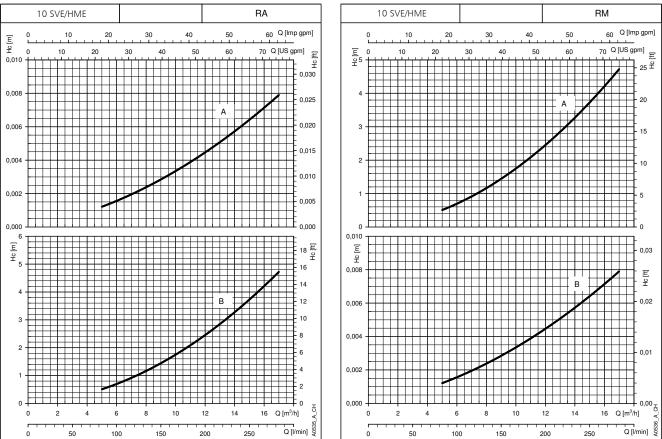

The performance curves do not take into account flow resistance in the valves and piping.

The curves show the performance with one, two and three pumps running.

These performances are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

a xylem brand

SMB10, SMB20, SMB30 BOOSTER SETS SERIES Hc PRESSURE DROP CURVE


The declared curves are valid for liquids with density $\rho = 1$ Kg/dm³ and kinematic viscosity v = 1 mm²/sec. Hc (A): Pressure drop curve on delivery side of the pump. Hc (B): Pressure drop curve on suction side of the pump.

RA: check valve on suction side. RM: check valve on delivery side.

The pressure drops do not consider the distributed pressure drops on the manifold.

a **xylem** brand

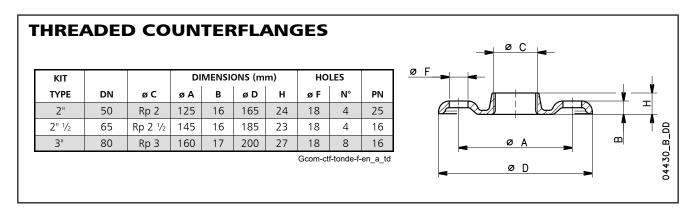
SMB10, SMB20, SMB30 BOOSTER SETS SERIES Hc PRESSURE DROP CURVE

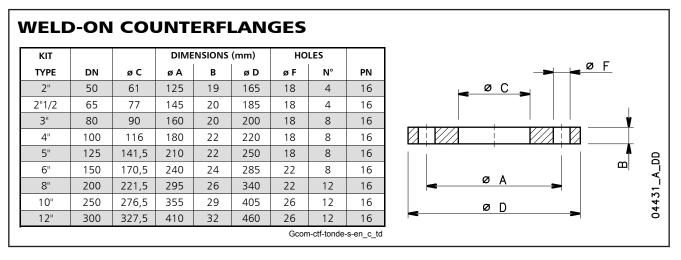
The declared curves are valid for liquids with density $\rho=1$ Kg/dm³ and kinematic viscosity $\nu=1$ mm²/sec.

Hc (A): Pressure drop curve on delivery side of the pump. Hc (B): Pressure drop curve on suction side of the pump.

RA: check valve on suction side. RM: check valve on delivery side.

The pressure drops do not consider the distributed pressure drops on the manifold.

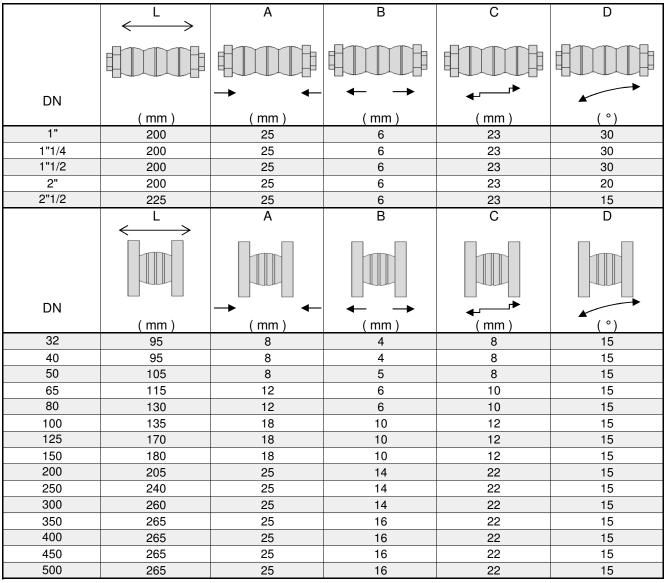



ACCESSORIES

FLANGE KIT

Manifolds are supplied with threaded attachments and caps for sealing the unused ends. For these manifolds, stainless steel AISI 304 or 316 flanges for connection to the system are available on request.

ANTI-VIBRATION JOINT KIT


Anti-vibration joints, or compensation joints, can be used to absorb deformations, expansions, pipe noise and reduce water hammering. They can also withstand a high level of vacuum, which enables the absorption of negative expansions due to depression.

Due to its elasticity, the material can deform or expand as necessary, making installation easier, simpler and quicker, even when the piping is not aligned.

The drinking water certificates are valid for the standard booster configuration. Please check with your Sales representative the drinking water certifications applicable for boosters equipped with fitted joints.

For more information, please contact the sales network.

RUBBER EXPANSION JOINT

GD_JOINT_B_TD

LEGEND

A = compression

- B = extension
- C = transverse
- D = angular movement NOTE. A - B - C - D can not be cumulative

129

PROTECTION SYSTEMS AGAINST DRY RUNNING

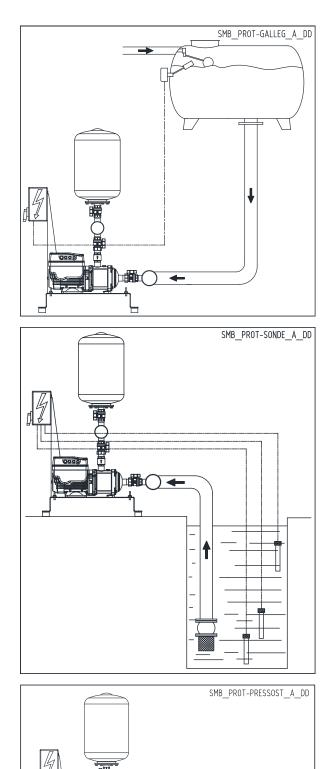
To avoid damaging the pumps, protection systems must be used to prevent it from dry running.

FLOAT SWITCH PROTECTION

The float switch system is used for supplies from open tanks. The float switch immersed in the tank must be connected to the control panel.

If there is no water, the float switch opens the electrical contact and the electric pumps stop.

ELECTRODE PROBE PROTECTION


The system with electrode probes is used for supplies from open tanks or wells.

Three probes are directly connected to the electric module with adjustable sensitivity that can be installed in the control panel.

If there is no water, the control circuit opens the electrical contact and the electric pumps stop.

MINIMUM PRESSURE SWITCH PROTECTION

The system with minimum pressure switch is used for water supplies from pressurised networks or tanks. The pressure switch is connected to the control panel. In case of water shortage, it opens the electric contact, causing the stop of the electric pumps.

(LOWARA

a xylem brand

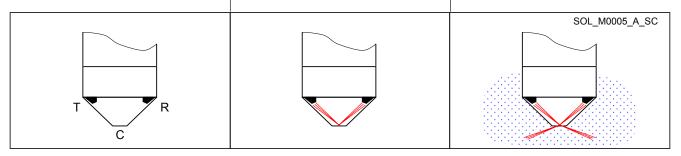
130

PROTECTION SENSOR AGAINST DRY RUNNING

Sensor for detecting the presence of water based on the optoelectronic principle, therefore non-invasive and with no moving parts. The sensor features an electronic contact (on/off) which stops the pump if there is no water in the seal area.

The sensor opens the electric contact if there is no water after they factory-set delay (10 seconds) elapses. The sensor is supplied as a kit complete with 2 metres of cable, an EPDM O-ring gasket and a stainless steel adapter.

General operating features

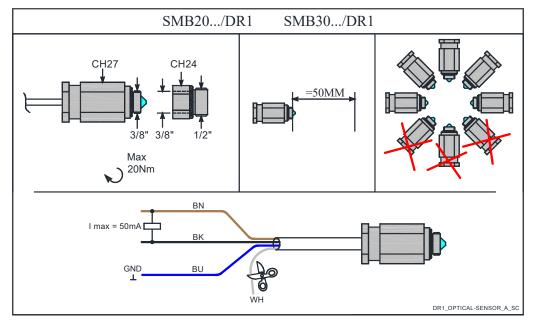

- KIT SENSOR DRP-GP: 21÷27 Vca: in the boosters sets the sensor is assembled on the suction manifold with a specific hydraulic fitting. (SMB20../DR1 and SMB30../DR1 booster set versions).
 21÷27 Vac, universal solid state output for external relay at 24 Vac (21÷27 Vac, 50 mA).
- KIT SENSOR DRP-HV: 15÷25 Vcc: the sensor can also be fitted directly on the filling cap of the e-SV pumps series. (SMB20../DR2, SMB30../DR3 booster set versions).
 - 15÷25 Vdc, NPN output at 25 V (10 mA) for HYDROVAR inverter and e-SM drive.
- Operation is independent of the hardness and conductivity of the water. The sensor cannot detect frozen liquids.

Operating principle

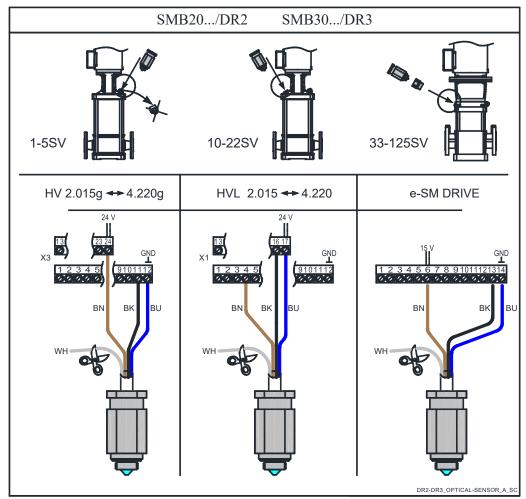
Operation is based on the change in the refractive index on the surfaces. The optic sensor comprises a glass cap (C) containing a transmitter (T) and an infrared receiver (R). If there is no liquid, all the infrared light emitted by the transmitter is internally reflected by the surface of the glass cap of the receiver. The electronic contact will be open. If liquid is present, the refractive index of the surface changes. Most of the infrared light emitted by the transmitter is dispersed in the liquid. The receiver receives less light and the electronic contact is closed.

((() LOWARA

a xylem brand


SPECIFICATIONS

- Materials:
 - Body in AISI 316L stainless steel
 - Glass optic cap
 - EPDM gasket
- Liquids: clean water, demi water. Operation is not affected by the hardness and conductivity of the liquid. To check the suitably of other liquids, contact the Lowara technical assistance service providing the characteristics of the liquid.
- Temperature of liquid: $-20^{\circ}C \div + 120^{\circ}C$ (cannot be used to detect frozen liquids).
- Ambient temperature: $-5^{\circ}C \div + 50^{\circ}C$
- Maximum pressure (PN): 25 bar
- Connector: 3/8 " (3/8" x 1/2" adaptor plug included in the Kit)
- Dimensions: 27x 60 mm
- IP55 protection
- Electrical characteristics:
- Input voltage SENSOR KIT DRP-GP: 21÷27 Vac
 - SENSOR KIT DRP-HV: 15÷25 Vdc
- Output SENSOR KIT DRP-GP: universal solid state 21÷27 Vac (50 mA) for 24 Vac external relay SENSOR KIT DRP-HV: NPN 25 V (10 mA) for HYDROVAR™ inverter and e-SM drive
- Alarm delay: 10 seconds (factory setting)
- FROR cable 4 x 0,34 mm² (PVC-CEI 20-22) 2 metres long.


WIRING DIAGRAM

KIT SENSOR DRP-GP (code 109394610)

KIT SENSOR DRP-HV (code 109394600)

The sensor can be directly mounted on the filling plug of the e-SV pumps. For the 33, 46, 66, 92, 125SV series, the $3/8" \times 1/2"$ adaptor ring included in the kit must also be installed.

132

TECHNICAL APPENDIX

a **xylem** brand

VAPOUR PRESSURE $\hat{\rho}$ DENSITY OF WATER TABLE

<u> </u>				<u> </u>				— .			1
t	Т	ps	ρ	t	Т	ps	ρ	t	Т	ps	ρ
°C	К	bar	kg/dm³	°C	К	bar	kg/dm³	°C	К	bar	kg/dm³
0	273,15	0,00611	0,9998	55	328,15	0,15741	0,9857	120	393,15	1,9854	0,9429
1	274,15	0,00657	0,9999	56	329,15	0,16511	0,9852	122	395,15	2,1145	0,9412
2	275,15	0,00706	0,9999	57	330,15	0,17313	0,9846	124	397,15	2,2504	0,9396
3	276,15	0,00758	0,9999	58	331,15	0,18147	0,9842	126	399,15	2,3933	0,9379
4	277,15	0,00813	1,0000	59	332,15	0,19016	0,9837	128	401,15	2,5435	0,9362
5	278,15	0,00872	1,0000	60	333,15	0,1992	0,9832	130	403,15	2,7013	0,9346
6	279,15	0,00935	1,0000	61	334,15	0,2086	0,9826	132	405,15	2,867	0,9328
7	280,15	0,01001	0,9999	62	335,15	0,2184	0,9821	134	407,15	3,041	0,9311
8	281,15	0,01072	0,9999	63	336,15	0,2286	0,9816	136	409,15	3,223	0,9294
9	282,15	0,01147	0,9998	64	337,15	0,2391	0,9811	138	411,15	3,414	0,9276
10	283,15	0,01227	0,9997	65	338,15	0,2501	0,9805	140	413,15	3,614	0,9258
11	284,15	0,01312	0,9997	66	339,15	0,2615	0,9799	145	418,15	4,155	0,9214
12	285,15	0,01401	0,9996	67	340,15	0,2733	0,9793	155	428,15	5,433	0,9121
13	286,15	0,01497	0,9994	68	341,15	0,2856	0,9788	160	433,15	6,181	0,9073
14	287,15	0,01597	0,9993	69	342,15	0,2984	0,9782	165	438,15	7,008	0,9024
15	288,15	0,01704	0,9992	70	343,15	0,3116	0,9777	170	433,15	7,920	0,8973
16	289,15	0,01817	0,9990	71	344,15	0,3253	0,9770	175	448,15	8,924	0,8921
17	290,15	0,01936	0,9988	72	345,15	0,3396	0,9765	180	453,15	10,027	0,8869
18	291,15	0,02062	0,9987	73	346,15	0,3543	0,9760	185	458,15	11,233	0,8815
19	292,15	0,02196	0,9985	74	347,15	0,3696	0,9753	190	463,15	12,551	0,8760
20	293,15	0,02337	0,9983	75	348,15	0,3855	0,9748	195	468,15	13,987	0,8704
21	294,15	0,24850	0,9981	76	349,15	0,4019	0,9741	200	473,15	15,550	0,8647
22	295,15	0,02642	0,9978	77	350,15	0,4189	0,9735	205	478,15	17,243	0,8588
23	296,15	0,02808	0,9976	78	351,15	0,4365	0,9729	210 215	483,15 488,15	19,077	0,8528
24 25	297,15 298,15	0,02982	0,9974	79 80	352,15	0,4547	0,9723	215	488,15	21,060	0,8467 0,8403
26	298,15	0,03166 0,03360	0,9971 0,9968	80	353,15 354,15	0,4736 0,4931	0,9716 0,9710	225	498,15	23,198 25,501	0,8403
20	300,15	0,03564	0,9966	81	355,15	0,5133	0,9704	223	503,15	27,976	0,8333
28	301,15	0,03778	0,9963	83	356,15	0,5342	0,9697	235	508,15	30,632	0,8205
20	302,15	0,04004	0,9960	84	357,15	0,5557	0,9691	235	513,15	33,478	0,8136
30	303,15	0,04241	0,9957	85	358,15	0,5780	0,9684	245	518,15	36,523	0,8065
31	304,15	0,04491	0,9954	86	359,15	0,6011	0,9678	250	523,15	39,776	0,7992
32	305,15	0,04753	, 0,9951	87	360,15	0,6249	0,9671	255	528,15	43,246	0,7916
33	, 306,15	0,05029	, 0,9947	88	, 361,15	0,6495	, 0,9665	260	533,15	46,943	, 0,7839
34	307,15	0,05318	0,9944	89	362,15	0,6749	0,9658	265	538,15	50,877	0,7759
35	308,15	0,05622	0,9940	90	363,15	0,7011	0,9652	270	543,15	55,058	0,7678
36	309,15	0,05940	0,9937	91	364,15	0,7281	0,9644	275	548,15	59,496	0,7593
37	310,15	0,06274	0,9933	92	365,15	0,7561	0,9638	280	553,15	64,202	0,7505
38	311,15	0,06624	0,9930	93	366,15	0,7849	0,9630	285	558,15	69,186	0,7415
39	312,15	0,06991	0,9927	94	367,15	0,8146	0,9624	290	563,15	74,461	0,7321
40	313,15	0,07375	0,9923	95	368,15	0,8453	0,9616	295	568,15	80,037	0,7223
41	314,15	0,07777	0,9919	96	369,15	0,8769	0,9610	300	573,15	85,927	0,7122
42	315,15	0,08198	0,9915	97	370,15	0,9094	0,9602	305	578,15	92,144	0,7017
43	316,15	0,09639	0,9911	98	371,15	0,9430	0,9596	310	583,15	98,70	0,6906
44	317,15	0,09100	0,9907	99	372,15	0,9776	0,9586	315	588,15	105,61	0,6791
45	318,15	0,09582	0,9902	100	373,15	1,0133	0,9581	320	593,15	112,89	0,6669
46	319,15	0,10086	0,9898	102	375,15	1,0878	0,9567	325	598,15	120,56	0,6541
47	320,15	0,10612	0,9894	104	377,15	1,1668	0,9552	330	603,15	128,63	0,6404
48	321,15	0,11162	0,9889	106	379,15	1,2504	0,9537	340	613,15	146,05	0,6102
49	322,15	0,11736	0,9884	108	381,15	1,3390	0,9522	350	623,15	165,35	0,5743
50	323,15	0,12335	0,9880	110	383,15	1,4327	0,9507	360	633,15	186,75	0,5275
51	324,15	0,12961	0,9876	112	385,15	1,5316	0,9491	370	643,15	210,54	0,4518
52	325,15	0,13613	0,9871	114	387,15	1,6362	0,9476	374,15	647,30	221,20	0,3154
53	326,15	0,14293	0,9862	116	389,15	1,7465	0,9460				
54	327,15	0,15002	0,9862	118	391,15	1,8628	0,9445				t npsh b sc

G-at_npsh_b_sc

a **xylem** brand

TABLE OF FLOW RESISTANCE IN 100 m OFSTRAIGHT CAST IRON PIPELINE (HAZEN-WILLIAMS FORMULA C=100)

	RATE							. –	NOMIN/	AL DIAM	ETER ir	nm an							
m³/h	l/min		15	20	25	32	40	50	65	80	100	125	150	175	200	250	300	350	400
			1/2"	3/4"	1"	1 1/4"	1 1/2"	2	2 1/2"	3"	4"	5"	6"	7"	8"	10"	12"	14"	16
0,6	10	v hr	0,94 16	0,53 3,94	0,34 1,33	0,21 0,40	0,13 0,13												
0,9	15	V	1,42	0,80	0,51	0,31	0,20			The hr	values r	nust be	multiplied	d by:					
	20	hr V	33,9 1,89	8,35 1,06	2,82 0,68	0,85 0,41	0,29 0,27	0,17	1	0 71 fc	r aalvan	ized or n	ainted st	eel nine	\$				
1,2	20	hr V	57,7 2,36	14,21 1,33	4,79 0,85	1,44 0,52	0,49 0,33	0,16 0,21	-		-				5				
1,5	25	hr	87,2	21,5	7,24	2,18	0,73	0,25		0,54 fc	r stainle	ss steel	or coppe	r pipes					
1,8	30	v hr	2,83 122	1,59 30,1	1,02 10,1	0,62 3,05	0,40 1,03	0,25 0,35	1	0 47 fc	r PVC o	r PE pipe	25						
2,1	35	v	3,30	1,86	1,19	0,73	0,46	0,30		0,		– p.p.							
		hr v	162	40,0 2,12	13,5 1,36	4,06 0,83	1,37 0,53	0,46	0,20										
2,4	40	hr		51,2	17,3	5,19	1,75	0,59	0,16										
3	50	v hr		2,65 77,4	1,70 26,1	1,04 7,85	0,66 2,65	0,42 0,89	0,25 0,25										
3,6	60	v		3,18	2,04	1,24	0,80	0,51	0,30										
		hr V		108 3,72	36,6 2,38	11,0 1,45	3,71 0,93	1,25 0,59	0,35										
4,2	70	hr		144 4,25	48,7 2,72	14,6	4,93	1,66	0,46										
4,8	80	v hr		4,25 185	62,3	1,66 18,7	1,06 6,32	0,68 2,13	0,40 0,59										
5,4	90	v hr			3,06 77,5	1,87 23,3	1,19 7,85	0,76 2,65	0,45 0,74	0,30 0,27									
6	100	v			3,40	2,07	1,33	0,85	0,50	0,33									
		hr v			94,1 4,25	28,3 2,59	9,54 1,66	3,22	0,90	0,33 0,41									
7,5	125	hr			142	42,8	14,4	4,86	1,36	0,49									
9	150	v hr				3,11 59,9	1,99 20,2	1,27 6,82	0,75 1,90	0,50 0,69	0,32 0,23								
10,5	175	v				3,63	2,32	1,49	0,88	0,58	0,37								
		hr V				79,7 4,15	26,9 2,65	9,07 1,70	2,53	0,92	0,31 0,42								
12	200	hr				102	34,4	11,6	3,23	1,18	0,40	0.04							
15	250	v hr				5,18 154	3,32 52,0	2,12 17,5	1,26 4,89	0,83 1,78	0,53 0,60	0,34 0,20							
18	300	v hr					3,98 72,8	2,55 24,6	1,51 6,85	1,00 2,49	0,64 0,84	0,41 0,28							
24	400	v					5,31	3,40	2,01	1,33	0,85	0,54	0,38						
		hr v					124 6,63	41,8 4,25	11,66 2,51	4,24	1,43 1,06	0,48	0,20 0,47						
30	500	hr					187	63,2	17,6	6,41	2,16	0,73	0,30						
36	600	v hr						5,10 88,6	3,02 24,7	1,99 8,98	1,27 3,03	0,82 1,02	0,57 0,42	0,42 0,20					
42	700	v						5,94	3,52	2,32	1,49	0,95	0,66	0,49					
		hr V						118 6,79	32,8 4,02	11,9 2,65	4,03 1,70	1,36	0,56 0,75	0,26					
48	800	hr V						151	42,0 4,52	15,3	5,16	1,74 1,22	0,72	0,34 0,62					
54	900	hr						7,64 188	4,52 52,3	2,99 19,0	1,91 6,41	2,16	0,85 0,89	0,62					
60	1000	v hr							5,03 63,5	3,32 23,1	2,12 7,79	1,36 2,63	0,94 1,08	0,69 0,51	0,53 0,27				
75	1250	v							6,28	4,15	2,65	1,70	1,18	0,87	0,66				
		hr V							96,0 7,54	34,9 4,98	11,8 3,18	3,97 2,04	1,63 1,42	0,77	0,40 0,80				
90	1500	hr							134	48,9	16,5	5,57	2,29	1,08	0,56				
105	1750	v hr							8,79 179	5,81 65,1	3,72 21,9	2,38 7,40	1,65 3,05	1,21 1,44	0,93 0,75				
120	2000	v hr								6,63 83,3	4,25 28,1	2,72 9,48	1,89 3,90	1,39 1,84	1,06 0,96	0,68 0,32			
150	2500	v								8,29	5,31	3,40	2,36	1,73	1,33	0,85			
		hr v								126	42,5 6,37	14,3 4,08	5,89 2,83	2,78 2,08	1,45 1,59	0,49	0,71		
180	3000	hr									59,5	20,1	8,26	3,90	2,03	0,69	0,28		
210	3500	v hr									7,43 79,1	4,76 26,7	3,30 11,0	2,43 5,18	1,86 2,71	1,19 0,91	0,83 0,38		
240	4000	v									8,49	5,44	3,77	2,77	2,12	1,36	0,94		
-		hr V									101	34,2 6,79	14,1 4,72	6,64 3,47	3,46 2,65	1,17 1,70	0,48		
300	5000	hr										51,6	21,2	10,0	5,23	1,77	0,73		
360	6000	v hr										8,15 72,3	5,66 29,8	4,16 14,1	3,18 7,33	2,04 2,47	1,42 1,02		
420	7000	v hr											6,61 39,6	4,85	3,72	2,38	1,65	1,21	
480	8000	v											7,55	18,7 5,55	9,75 4,25	3,29 2,72	1,35 1,89	0,64 1,39	
		hr V											50,7 8,49	23,9 6,24	12,49 4,78	4,21 3,06	1,73 2,12	0,82	1,1
540	9000	hr											63,0	29,8	15,5	5,24	2,16	1,02	0,5
		v	1 -	1		1			1			1		6,93	5,31	3,40	2,36	1,73	1,3

hr = flow resistance for 100 m of straight pipeline (m)

V = water speed (m/s)

G-at-pct-en_b_th

FLOW RESISTANCE TABLE OF FLOW RESISTANCE IN BENDS, VALVES AND GATES

The flow resistance is calculated using the equivalent pipeline length method according to the table below:

ACCESSORY						D	N					
ТҮРЕ	25	32	40	50	65	80	100	125	150	200	250	300
					Equiva	lent pipe	eline len	igth (m)				
45° bend	0,2	0,2	0,4	0,4	0,6	0,6	0,9	1,1	1,5	1,9	2,4	2,8
90° bend	0,4	0,6	0,9	1,1	1,3	1,5	2,1	2,6	3,0	3,9	4,7	5,8
90° smooth bend	0,4	0,4	0,4	0,6	0,9	1,1	1,3	1,7	1,9	2,8	3,4	3,9
Union tee or cross	1,1	1,3	1,7	2,1	2,6	3,2	4,3	5,3	6,4	7,5	10,7	12,8
Gate valve	-	-	-	0,2	0,2	0,2	0,4	0,4	0,6	0,9	1,1	1,3
Foot check valve	1,1	1,5	1,9	2,4	3,0	3,4	4,7	5,9	7,4	9,6	11,8	13,9
Non return valve	1,1	1,5	1,9	2,4	3,0	3,4	4,7	5,9	7,4	9,6	11,8	13,9

G-a-pcv-en_b_th

The table is valid for the Hazen Williams coefficient C=100 (cast iron pipework)

for galvanized steel or painted steel multiply the values by 0,71;

for stainless steel and copper multiply the values by 0,54;

for Pvc and PE multiply the values by 0,47.

When the **equivalent pipeline length** has been determined, the flow resistance is obtained from the table in the previous page.

The values given are guideline values which are bound to vary slightly according to the model, especially for gate valves and non-return valves, for which it is a good idea to check the values supplied by manufacturers.

VOLUMETRIC CAPACITY

Litres	Cubic metres	Cubic feet	Cubic feet	Imperial gallon	U.S. gallon
per minute	per hour	per hour	per minute	per minute	per minute
l/min	m³/h	ft³/h	ft³/min	Imp. gal/min	US gal/min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2642
16,6667	1,0000	35,3147	0,5886	3,6662	4,4029
0,4719	0,0283	1,0000	0,0167	0,1038	0,1247
28,3168	1,6990	60,0000	1,0000	6,2288	7,4805
4,5461	0,2728	9,6326	0,1605	1,0000	1,2009
3,7854	0,2271	8,0208	0,1337	0,8327	1,0000

PRESSURE AND HEAD

Newton per square metre	kilo Pascal	bar	Pound force per square inch	Metre of water	Millimetre of mercury
N/m ²	kPa	bar	psi	m H ₂ O	mm Hg
1,0000	0,0010	1 x 10 ⁻⁵	1,45 x 10⁻⁴	1,02 x 10 ⁻⁴	0,0075
1 000,0000	1,0000	0,0100	0,1450	0,1020	7,5006
1 x 10 ⁵	100,0000	1,0000	14,5038	10,1972	750,0638
6 894,7570	6,8948	0,0689	1,0000	0,7031	51,7151
9 806,6500	9,8067	0,0981	1,4223	1,0000	73,5561
133,3220	0,1333	0,0013	0,0193	0,0136	1,0000

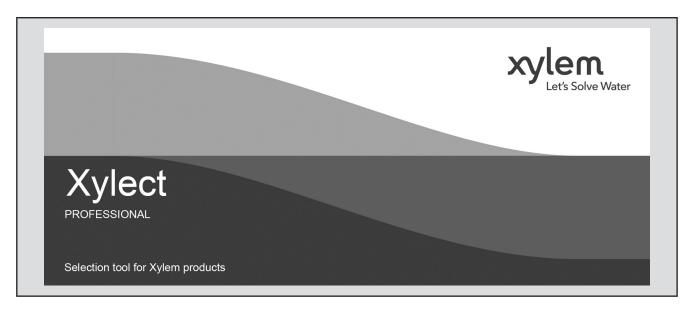
LENGTH

Millimetre	Centimetre	Metre	Inch	Foot	Yard
mm	cm	m	in	ft	yd
1,0000	0,1000	0,0010	0,0394	0,0033	0,0011
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1 000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

VOLUME

Cubic metre	Litre	Millilitre	Imperial gallon	U.S. gallon	Cubic foot
m³	L	ml	imp. gal.	US gal.	ft³
1,0000	1 000,0000	1 x 10 ⁶	219,9694	264,1720	35,3147
0,0010	1,0000	1 000,0000	0,2200	0,2642	0,0353
1 x 10 ⁻⁶	0,0010	1,0000	2,2 x 10 ⁻⁴	2,642 x 10 ⁻⁴	3,53 x 10⁻⁵
0,0045	4,5461	4 546,0870	1,0000	1,2009	0,1605
0,0038	3,7854	3 785,4120	0,8327	1,0000	0,1337
0,0283	28,3168	28 316,8466	6,2288	7,4805	1,0000

TEMPERATURE

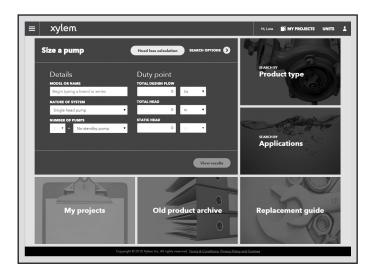

Water	Kelvin	Celsius	Fahrenheit	
	к	°C	°F	$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$
icing	273,1500	0,0000	32,0000	°C = (°F − 32) × 5⁄9
boiling	373,1500	100,0000	212,0000	

137

G-at_pp-en_b_sc

FURTHER PRODUCT SELECTION AND DOCUMENTATION Xylect

Xylect is pump solution selection software with an extensive online database of product information across the entire Lowara range of pumps and related products, with multiple search options and helpful project management facilities. The system holds up-to-date product information on thousands of products and accessories.


The possibility to search by applications and the detailed information output given makes it easy to make the optimal selection without having detailed knowledge about the Lowara products.

The search can be made by:

- Application
- Product type
- Duty point

Xylect gives a detailed output:

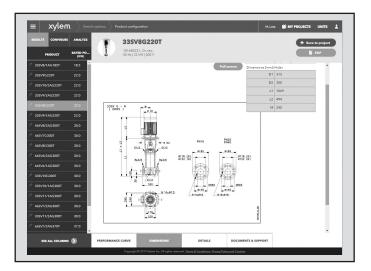
- List with search results
- Performance curves (flow, head, power, efficiency, NPSH)
- Motor data
- Dimensional drawings
- Options
- Data sheet printouts
- Document downloads incl dxf files

The search by application guides users not familiar with the product range to the right choice.

138

FURTHER PRODUCT SELECTION AND DOCUMENTATION Xylect

E Xylem Search results configure analyze	ch options Product configuration 33SV8G22	20T		Save to project
PERFORMANCE CURVE +	101680231, On red 50 Hz 22 kW 400	i. V		PDF
INSTALLATION +				
MOTOR —	DIAGRAM VIEW		•	
MOTOR MANUFACTURER: Lowara	[m]			
MOTOR DESIGN: IE3 Three phase surfac			💱 Full screen 📃 🛨 Exp	port curve points
MOTOR: 22 kW PLM160/3220 E3	140		3.9%	335V8
RATED POWER: 22 kW	100			
RATED VOLTAGE:	80			
400 V (380-415 V)	40			
RATED CURRENT: 40.4 A	20			73.8 %
DEGREE OF PROTECTION: IP 55	[%] Efficiency 40 20			335V8
MATERIALS +	[kW] 20 Shaft power P2			33SV8 (P2)
	18			18.2 KW
	14	12 16 20	31.2 m∜h 24 28 32 36	[m∜h]
Go to Accessories				(·····)


The detailed output makes it easy to select the optimal pump from the given alternatives.

The best way to work with Xylect is to create a personal account. This makes it possible to:

- Set own standard units
- Create and save projects
- Share projects with other Xylect users

Every registered user has a proper space, where all projects are saved.

For more information about Xylect please contact our sales network or visit <u>www.xylect.com</u>.

Dimensional drawings appear on the screen and can be downloaded in dxf format.

139

Xylem |'zīləm|

1) The tissue in plants that brings water upward from the roots;

2) a leading global water technology company.

We're a global team unified in a common purpose: creating advanced technology solutions to the world's water challenges. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. Our products and services move, treat, analyze, monitor and return water to the environment, in public utility, industrial, residential and commercial building services settings. Xylem also provides a leading portfolio of smart metering, network technologies and advanced analytics solutions for water, electric and gas utilities. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise with a strong focus on developing comprehensive, sustainable solutions.

For more information on how Xylem can help you, go to <u>www.xylem.com</u>.

Xylem Water Solutions UK Limited

Millwey Rise Industrial Estate Axminster, Devon EX13 5HU - UK Tel: +44 (0) 1297 630230 Fax: +44 (0) 1297 630270 Email: lowaraukenquiries@xyleminc.com www.lowara.co.uk

Xylem Water Solutions Ireland Limited

50 Broomhill Close Airton Road Tallaght, Dublin 24 D24 - Ireland Tel: +353 (0) 1 452 4444 Fax: +353 (0) 1 452 4795 Email: flygtIRL@xyleminc.com www.xylemwatersolutions.com/ie

Xylem Water Solutions UK Limited reserves the right to make modification without prior notice. Lowara, Xylem are trademarks of Xylem Inc. or one of its subsidiaries © 2019 Xylem, Inc.